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Abstract
In the context of the rapid development of the digital economy, regional innovation efficiency 

(RIE) has become an important indicator for measuring regional economic competitiveness. This 
study establishes an evaluation system for RIE driven by the digital economy, employing a two-stage 
inverse data envelopment analysis (DEA) model to measure RIE in China. It also conducts an empirical 
analysis of the allocation of technological resources in Jiangsu Province, providing valuable insights 
for RIE research within the framework of the digital economy. The research results indicate that from 
2014 to 2019, the overall RIE in China gradually improved, with significant increases in innovation 
efficiency in the eastern and western regions, while the northeastern region experienced a slight decline. 
Focusing on resource allocation in Jiangsu, we find that as the input proportion gradually increases, it is 
necessary to reduce output in the technology development stage and enhance output in the achievement 
transformation stage to maintain the current efficiency level. However, to improve the RIE score, it is 
essential to simultaneously increase the output levels of both stages. 
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1. Introduction

The Fifth Plenary Session of the 19th Central Committee of the Communist Party of China has 
explicitly stated the need to uphold innovation as the central role in China’s modernization efforts, fully 
implement the innovation-driven development strategy, strengthen the national innovation system, and 
promote the optimization and upgrading of the economic system. As the cornerstone of national scientific 
and technological innovation, the national innovation system significantly impacts the country’s global 
competitiveness. Regional innovation, as a crucial component of the national innovation system, plays 
a vital role in advancing the country’s scientific and technological progress (Chen et al., 2018; Wang and 
Ceng, 2024).

With the deep digital transformation of the global economy, the digital economy has become one 
of the key engines driving social and economic development. It has not only profoundly changed the 
production methods, business models, and management practices of traditional industries but has also 
given rise to many emerging industries and new economic growth points (Wang and Li, 2024). In this 
context, enhancing regional innovation capability has become particularly important, as it directly affects 
a region’s position and development potential in global competition (Lou et al., 2024). Particularly in 
China, the significant differences in economic development levels and degrees of digitalization among 
regions make the evaluation and optimization of regional innovation efficiency (RIE) an urgent issue to 
address (Wang and Ceng, 2024).

The development of the digital economy has brought unprecedented opportunities for regional 
innovation. Firstly, the widespread application of digital technologies has significantly enhanced the 
speed and breadth of information dissemination, facilitating the rapid accumulation and spread of 
knowledge and providing richer resources and platforms for regional innovation. Secondly, numerous 
emerging industries spawned by the digital economy, such as e-commerce, artificial intelligence, and 
big data, have become new growth points for regional economies, further driving the development 
of regional innovation. Additionally, the popularization and application of digital technologies have 
transformed traditional research and development models, enabling cross-regional and cross-disciplinary 
innovation collaboration and improving the efficiency of regional innovation (Li, 2021; Guo et al., 2023; 
Wen et al., 2023). However, the development of the digital economy also presents new challenges for 
regional innovation. Firstly, the rapid pace of digital economic development means that regions that fail 
to adapt to and utilize these new technologies in a timely manner may find themselves at a disadvantage 
in innovation competition. Secondly, the rise of new technological and innovation barriers has led to an 
imbalanced allocation of innovation resources across regions, exacerbating regional economic disparities 
(Zhang et al., 2021; Wu et al., 2023; Yu et al., 2023). Therefore, in the context of the digital economy, 
accurately evaluating RIE, identifying shortcomings in regional innovation development, and proposing 
corresponding policy recommendations have become crucial research topics.

RIE refers to the extent to which a region’s innovation input matches its innovation output, specifically 
how many high-quality innovation outcomes can be generated with a given amount of innovation resources 
(Fritsch and Slavtchev, 2011; Bai, 2013). However, with the rapid development of the digital economy, 
traditional DEA methods may not fully capture the complex changes in innovation patterns and networks. 
Therefore, there is a need to further analyze the optimization of regional technological resource allocation to 
enhance innovation capabilities, promote economic and social development, reduce regional disparities, and 
achieve national strategic goals (Chen, 2022). The introduction of inverse DEA methods provides a more 
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precise computational tool, allowing for the analysis of optimal outputs (or inputs) under given input (or 
output) conditions while maintaining the efficiency of decision-making units (DMUs) (Wei et al., 2000).

This study aims to explore methods and applications for evaluating RIE in the context of the digital 
economy. By constructing a new RIE evaluation model based on the digital economy, the study will 
comprehensively analyze the current status and trends of innovation resource input, innovation output, 
and efficiency levels across various regions. Specifically, the objectives of this research include the 
following aspects: First, to develop an RIE evaluation system under the digital economy. This involves 
designing a set of evaluation indicators that cover multiple dimensions, such as innovation input and 
output, tailored to the characteristics of the digital economy and the practical situation of regional 
innovation (Guo et al., 2023). Second, to analyze the spatial differences and evolution patterns of RIE. 
Using actual data from regions across the country, the study will apply the constructed model to measure 
RIE, analyze its spatial distribution characteristics and temporal evolution patterns, and reveal the 
differences in innovation efficiency between regions and their causes (Lan and Zhao, 2020). Finally, to 
propose policy recommendations for improving RIE. Based on the results of the empirical analysis, the 
study will offer targeted policy suggestions for different regions’ innovation efficiency statuses, aiming to 
provide decision-making references for local governments in formulating innovation-driven development 
strategies.

Compared to existing research, our study is unique in several aspects: First, it refines the selection 
of regional innovation evaluation indicators and efficiency measurement in the context of the digital 
economy. Second, it employs inverse DEA methods to analyze and optimize regional technological 
resource allocation. Finally, it further enriches the application of inverse DEA methods in two-stage 
production systems. The remainder of this paper is organized as follows: Section 2 reviews relevant 
literature on the digital economy, inverse DEA methods, and RIE evaluation; Section 3 constructs a 
measurement path for RIE under the digital economy and designs DEA and inverse DEA models for two-
stage production systems; Section 4 measures RIE and conducts a resource allocation analysis for Jiangsu; 
and finally, the paper concludes with a summary and recommendations for future research.

2. Literature review

2.1. Digital economy
The concept of the digital economy initially described an “information-based” economy, characterized 

as a new economic system driven by the digital revolution in information and communications 
technology (ICT) and built on the networking of human intelligence. It primarily focused on industries 
related to information technology and their market applications, such as communication equipment 
manufacturing, information technology services, and digital content (Su et al., 2023). With the advent 
of innovations in digital technologies like artificial intelligence and the Internet of Things, along with 
the convergence of traditional industries, the scope of the digital economy has gradually expanded 
to encompass the “new economy” emerging from the widespread use of the internet, signifying new 
economic phenomena supported by digital information technology (Cusumano, 2014). Broadly, the digital 
economy can be understood as economic activities driven by digital technology innovation, centered 
around data resources, facilitated by internet platforms, and characterized by new formats and models 
(Chen et al., 2022). Narrowly, it refers to the digital sector based on ICT that produces digital products and 
provides digital platform services (Bukht and Heeks, 2017).
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As the digital economy continues to evolve and deeply integrate with traditional industries, the 
application of digital technologies has become an essential tool for promoting cross-domain and cross-
regional collaboration among various innovation entities, transforming innovation activities across 
sectors. In product innovation, digital technology’s inherent advantage in continuous self-innovation 
allows management platforms to quickly incorporate vast amounts of product data into the design and 
development of new products, giving rise to new manufacturing models like personalized and networked 
collaborative manufacturing (Yoo et al., 2010). In production management, digital intelligent management 
and networked service platforms have effectively enhanced resource utilization efficiency and overall 
productivity (Liu and Zheng, 2022). In innovation collaboration, the internet and other digital media have 
broken down spatial and geographical barriers, enabling multi-party innovation across regions through 
digital platforms (Miao, 2021). The development of the digital economy has reduced the costs of economic 
activities, improved operational efficiency, and had a profound impact on various aspects of the national 
economy, including production, consumption, and distribution (Goldfarb and Tucker, 2019).

In summary, the digital economy can be viewed as a sector based on ICT, involved in producing 
digital products and providing digital platform services. It encompasses economic activities driven 
by digital technology innovation, with data resources at its core, supported by internet platforms, and 
characterized by new formats and models.

2.2. Research on RIE
An accurate measurement of RIE is crucial for enhancing the management and investment in 

regional economic science and technology. This topic has gained increasing scholarly attention in recent 
years. Zabala-Iturriagagoitia et al. (2007) utilized the DEA methodology to evaluate regional innovation 
system performance using data from the European Innovation Scoreboard for 2002 and 2003. Fritsch 
and Slavtchev (2010) assessed regional efficiency in Germany by developing a model that connected 
regional R&D investment with output. Given the complexity of the regional innovation process, some 
studies have expanded the measurement of regional efficiency by focusing on the innovation process 
itself, distinguishing between upstream knowledge creation and downstream knowledge application 
sub-processes (Guan and Chen, 2012). Chen et al. (2018) argued that overall efficiency should be 
assessed dynamically by considering the connections between consecutive periods in a multi-period 
system, since certain activities, like R&D capital stock, impact both the current and future periods. 
Wang and Zhang (2022) employed dynamic network DEA to estimate the overall, period-specific, and 
sub-stage innovation efficiency in China, further elucidating the complex regional innovation process. 
Additionally, regression-based parameterization methods, such as the Cobb-Douglas production 
function (Fritsch and Slavtchev, 2011) and stochastic frontier analysis (Barra and Ruggiero, 2022), are 
also used to develop RIE scoring models. However, due to their complexity, DEA methods are more 
commonly employed in evaluating RIE.

Regardless of the methods used to measure RIE, significant regional differences in innovation 
efficiency scores are apparent. Even regions with abundant scientific and technological resources often 
face the challenge of low efficiency (Faria et al., 2020). Recent research has also examined the factors 
influencing regional efficiency. From a policy perspective, government and public sector financial 
support significantly enhances RIE by improving R&D efficiency (Cao et al., 2023). Resource-wise, the 
number of innovative entities and the regional distribution of innovation resources play a crucial role, 
as more developed regions tend to attract a greater influx of innovative talent (Yu et al., 2023). From 
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an environmental standpoint, a favorable innovation environment facilitates cross-disciplinary, cross-
regional collaboration and foreign investment (Fan et al., 2020; Li et al., 2018). On the industrial side, 
producer services and high-tech industries significantly impact RIE, particularly in the context of the 
digital economy. The application of artificial intelligence, digitalization, and other technologies in high-
tech industries has accelerated resource flow and improved resource allocation efficiency (Wu et al., 2023; 
Yang et al., 2022).

Currently, the impact of the digital economy on RIE has not been sufficiently explored, and the 
existing efficiency evaluation systems are incomplete. Most studies focus on the efficiency analysis of 
traditional innovation resources, with few incorporating digital economy-related indicators into the 
evaluation of RIE. There is a lack of a comprehensive assessment of RIE in the context of the digital 
economy and regional integrated development.

2.3. DEA and inverse DEA
DEA, as a non-parametric method, does not require the prior construction of a production function. It 

can independently provide efficiency scores and assess the efficient frontier through both multiplier and 
envelopment models. Consequently, it has become a widely used tool for evaluating relative efficiency 
(Charnes et al., 1978). However, traditional DEA models treat the system as a “black box,” ignoring its 
internal structure and calculating only overall efficiency. This approach makes it difficult to determine 
the efficiency of individual sub-processes, potentially introducing biases in efficiency assessments. To 
address this limitation, network DEA models were developed and have gained rapid popularity (Ratner 
et al., 2023). In practice, efficiency evaluations often involve more complex scenarios, where calculations 
are divided into two or more sub-processes, including serial, parallel, hybrid, hierarchical, and dynamic 
structures (Kao, 2014). 

Research by Zhang and Cui (1999) on project evaluation systems has paved the way for new 
directions in DEA studies. Their work focuses on determining the additional input required to maintain a 
machine’s current efficiency while increasing its output by a specified amount. Building on this, Wei et al. 
(2000) developed the inverse DEA model to estimate the necessary input and output levels. The inverse 
DEA method has gained significant popularity in recent years, with extensive development in both 
theoretical and applied research. Theoretically, Yan et al. (2002) expanded the inverse DEA framework by 
incorporating preference cones for input and output estimation in resource allocation. Lim (2016) further 
advanced the model by introducing changes in the production frontier. Ghiyasi and Zhu (2020) developed 
an inverse DEA model using semi-directional radial measures to handle negative data and also addressed 
pollution caused by technologies that fail to produce expected outputs. Ghomia et al. (2021) proposed an 
inverse DEA model that accommodates random data, while Modhej et al. (2017) enhanced the method 
by integrating inverse DEA with neural networks to maintain relative efficiency values. Zhang and Cui 
(2020) introduced a general non-radial inverse DEA model where slacks play a crucial role. Jahanshahloo 
et al. (2015) proposed cross-temporal inverse DEA dependency using multi-objective programming. 
As the theory and methods of inverse DEA have developed, its applications have become increasingly 
widespread across various fields, including commerce, supply chain management, education, sustainable 
production, energy, and the environment (Emrouznejad et al., 2023).

Despite the broad applications of inverse DEA, there is still limited research on its use in evaluating 
RIE. Therefore, our study extends the application of inverse DEA to RIE, as well as to two-stage 
production systems.
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2.4. Literature summary
Existing research still has several shortcomings. First, as mentioned in our introduction, the digital 

economy has transformed traditional innovation models and accelerated resource flow. The relationship 
between the digital economy and RIE is complex and multifaceted, requiring consideration from multiple 
dimensions. Most current studies explore the impact of the digital economy on RIE using economic 
models but often fail to incorporate digital indicators into the DEA model. Second, existing research 
on RIE evaluation primarily focuses on the efficiency analysis of traditional innovation resource input 
and output, lacking a reasonable assessment of RIE in the new context of digital economy and regional 
integration development. Lastly, the application of the inverse DEA model to RIE is still relatively rare. 
Given the uneven distribution of technological resources among regions, it is crucial to utilize the inverse 
DEA model to optimize regional resource allocation. This study has the following two main contributions 
compared to existing research: First, building on traditional RIE assessments, we delve into the evaluation 
transition against the backdrop of the digital economy, providing a new perspective for RIE evaluations. 
By constructing an RIE assessment index system specifically designed for digital economic conditions, we 
selected input and output indicators closely related to the digital economy, such as digital capital, digital 
industrialization and industrial digitization. This innovation not only enhances the relevance of RIE 
assessments but also enriches the existing assessment indicators, allowing the results to more accurately 
reflect the impact of the digital economy on regional innovation. Second, the study applies an inverse 
DEA model to optimize resource allocation in a two-stage production system, further expanding the 
application of inverse DEA methods in the field of RIE evaluation. Through detailed analysis of resource 
allocation, we can identify bottlenecks and deficiencies in the innovation processes of various regions, 
thereby proposing targeted policy recommendations. The application of this method not only improves 
the accuracy and reliability of the assessments but also provides data support and theoretical foundations 
for practical decision-making.

3. Conceptual Framework and Methodology

3.1. Regional innovation process driven by the digital economy
Building on existing research, this article adopts an innovation value chain perspective (Hansen 

and Birkinshaw, 2007), categorizing regional innovation activities into two crucial stages: technological 
development and achievement transformation. In the context of the evolving digital economy, the 
innovation chain is further enriched and expanded through the lenses of supply, value sharing, and 
application, as illustrated in Fig. 1.

During the technological development stage, the key players are enterprises, universities, and 
research institutions (Xiong et al., 2020). At this stage, each innovation entity engages in R&D activities 
tailored to market and societal demands. Inputs include R&D funds and personnel, while outputs 
primarily take the form of patents and scientific papers. Moving to the achievement transformation stage, 
enterprises play the central role. Guided by market orientation, enterprises strategically invest in patents 
and engage in small-scale and pilot processes to meet customer demands. The ultimate goal is to develop 
new products that drive economic gains through both domestic sales and foreign exports.

In the digital economy, digital capital investment becomes a critical factor during the technology 
development stage. The rise of digital collaborative innovation, enabled by internet platforms, breaks 
down the internal barriers of regional innovation activities. Technology development increasingly 
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integrates with big data feedback from the demand side, while digitization and intelligent manufacturing 
drive cost savings and efficiency improvements in production processes. In the achievement 
transformation stage, digital technology provides essential tools for regional sales of digital products, 
facilitating the exploration of domestic market potential and expansion into international markets. The 
digital management model is key to reducing operating costs and increasing profits. Total revenue from 
telecommunications and software businesses serves as an indicator of the extent of digital application (Guo 
et al., 2023).

3.2. The model of two-stage production systems and inverse DEA
For a two-stage production process with n DMUs, as shown in Fig.2, the number of inputs in stage 

1 is m, the number of outputs in stage 1 is s1, the number of intermediate outputs that links stage 1 and 
stage 2 is q, and the number of outputs in stage 2 is s2. 

Fig. 1. Regional innovation process driven by the digital economy.

Fig. 2. Two-stage production process.

For DMUj, let X=(x1j, x2j, ..., xmj) denote the observed inputs in stage 1, Y(1)=(y(1)
1j, y

(1)
2j, ..., y

(1)
s1j) denote 

the observed outputs in stage 1, z=(z1j, z2j, ..., zqj) denote the observed intermediate indicators that links 
stage 1 and stage 2, Y(2)=(y(2)

1j, y
(2)

2j, ..., y
(2)

s2j) denote the observed outputs in stage 2. Assume that all input, 
intermediate and output indicators are positive. The output-oriented constant returns to scale (CRS) ratio-
form is model (1).
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(1)

(3)

(2)

(1)

By solving model (1), we can obtain the overall efficiency, which is equal to 1 if and only if both the 
first stage and the second stage are efficient. By performing the Charnes-Cooper transformation, which 
is to set                                                                   , tvi=i , tηd=d, tμr1=δr1, and tμr2=δr2, we can obtain the linear 

programming model. To better analyze the impact of altering a condition in linear programming on the 
objective function, we examine the dual form of model (1), referred to as model (2).

	  	

The optimal solution of model (2) is θ0
*, and θ0

*≥1. When θ0
*≠1, DMU0 is deemed inefficient. For zd0>0, 

we can obtain                                   from the fourth constraint of model (2), which implies intermediate inputs 
consumed at stage 2 may not exceed intermediate outputs produced at stage 1. Suppose stage 1 inputs of 
inefficient DMU0 increase from xi0 to xi0+Δxi0 where Δxi0≥0 with at least one element of Δxi0≠0. Let βr10={β10, 
β20, ..., βr10} and βr20={β10, β20, ..., βr20} denote a set of output targets and z~ d0={z~ 10, z~ 20, ..., z~ q0} denote a set of 
intermediate targets of DMU0. A DEA-type model (3) that estimates , βr10, βr20 and z~ d0 to maintain a pre-
specified relative efficiency level (1/θ ’

0).	  	

(1)

(2)

(2)
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(4)

Suppose βr10, βr20 and z~ d0 is obtained in a Pareto optimal solution of model (3). When a new DMU with 
inputs xi0+Δxi0, outputs βr10, βr20 and intermediate measures z~ d0 is added to the observed DMU set, relative 
efficiency of the new DMU is 1/θ’

0. Simultaneously, the frontier of best performance established by the 
observed DMU set does not change (Kazemi and Galagedera, 2023, Galagedera, 2024).

The simultaneous maximization of solutions for βr10 and βr20 in model (3) may not exist. A commonly 
employed approach is to assign preference weights to βr10 and βr20, i.e., to find the weighted sum of the 
objective function (Marler and Arora, 2010). In the weighted sum method, a set of non-negative weights is 
assigned to βr10 and βr20, ensuring that the weighted sum of the objective function is maximized. Assuming  
ω(1)={ω1

(1), ω2
(1), ..., ωr1

(1)} and ω(2)={ω1
(2), ω2

(2), ..., ωr2

(2)} represent a set of weights, the objective function 
can be expressed as finding the optimal value of ω(1)βr10+ω(2)βr20, transforming it into the form of a linear 
programming objective function, referred to as model (4).

	  	

By solving model (4), one can obtain the Pareto optimal solution for linear programming.

4. Empirical results

4.1. Indicators selection and descriptive analysis
As illustrated in Fig. 3, we categorize regional innovation into two distinct phases: the technology 

development stage and the achievement transformation stage. Traditionally, the internal expenditure 
of R&D funds (RDE) and the R&D personnel full-time equivalent (RDP) were considered the primary 
inputs. However, in the evolving digital economy, we now distinguish these inputs into two categories: 
digital capital and non-digital capital, incorporating ICT productive capital (ICTC) as a form of digital 
capital investment. The outputs for the technology development phase are twofold: the number of valid 
patents (NVP) obtained during the year and the number of papers published (NPP). Notably, the count 
of valid patents serves a dual purpose, acting both as the output for the technology development phase 
and as an input for the achievement transformation phase. Traditionally, income from the transfer of 
scientific and technological achievements (ITA) has been considered the ultimate indicator of a system’s 
output. However, given the significant influence of the digital economy, which requires consideration of 
both digital industrialization and industrial digitization, we have introduced two additional outputs: total 
telecommunications business volume (TBV) and software business revenue (SBR). Together, these three 
outputs (ITA, TBV, and SBR) measure the extent of deep integration between digital technology and the 
tangible economy.

(1)

(1) (2)

(2)

(2)

(2)

(2)

(2)

(1)

(1)

(1)

(1)
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Fig. 3. Regional innovation process driven by the digital economy.

Owing to data accessibility constraints, our study encompasses data from 30 regions in China, 
specifically excluding Tibet Autonomous Region, Hong Kong and Macao Special Administrative Regions, 
and Taiwan Province, over the period from 2014 to 2021. Table 1 offers a comprehensive overview of 
descriptive statistics for input-output indicators.

Table 1 
Descriptive statistics.

Variables

RDE
(Million yuan)

RDP
(person)

ICTC
(Million yuan)

NPP
(piece)

NVP
(piece)

ITA
(million yuan)

TBV
(million yuan)

SBR
(million yuan)

Years

2014
2016
2019

2014
2016
2019

2014
2016
2019

2015
2017
2020

2015
2017
2020

2016
2018
2021

2016
2018
2021

2016
2018
2021

Mean

43,376.9
52,248.4
73,797.5

122,643.9
129,231.1
159,867.4

410,538.1
493,501.2
550,716.3

16,887.0
20,154.8
29,202.7

155,760.4
206,684.4
369,364.8

36,436.2
57,124.0
119,854.6

5,194.7
21,790.9
56,642.2

160,774.1
206,362.4
318,340.0

Median

33,406.0
37,807.2
48,901.6

98,362.0
91,297.0
102,736.5

199,723.3
247,196.6
282,789.9

12,369.5
14,165.0
20,750.0

88,665.0
120,748.0
197,740.5

12,111.4
23,216.8
67,732.2

4,772.7
19,006.0
47,788.0

34,618.3
47,431.4
78,412.5

SD

46,966.2
57,786.9
81,174.0

130,287.9
139,860.1
189,810.3

730,811.3
878,616.1
945,206.2

19,119.6
21,831.7
29,381.5

207,810.8
272,564.5
504,777.1

72,994.2
93,125.4
151,720.7

3,874.2
15,340.0
39,881.4

238,031.0
303,904.7
502,228.6

Maximum

165,282.1
203,514.4
309,848.9

506,862.0
543,438.0
803,208.0

2,970,193.7
3,674,450.5
4,712,837.6

93,502.0
102,763.0
133,339.0

802,493.0
1,165,677.0
2,296,261.0

394,097.5
495,782.5
700,565.2

19,913.1
77,984.3
193,237.0

822,339.2
1,068,743.2
2,038,210.0

Minimum

1,432.4
1,399.8
2,056.8

4,731.0
4,166.0
5,476.0

4,086.1
8,280.3
8,497.4

309.0
551.0

1,255.0

2,975.0
3,107.0
12,420.0

344.3
392.2

1,410.4

672.1
4,228.1
8,614.0

115.4
141.1
249.0

Table 1 shows that the mean values of input indicators, output indicators, and intermediate measures 
all increased over the years. Specifically, RDE rose from 43,376.9 million yuan in 2014 to 73,797.5 million 
yuan in 2019, reflecting a 70.1% increase. RDP and ICTC also grew by 30.4% and 34.1%, respectively, 
during the same period. The annual average growth rates for RDE, RDP, and ICTC were 11.2%, 5.4%, and 
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6.1%, respectively, indicating a stable trend in these indicators, which justifies their consideration as input 
indicators. For intermediate measures, NVP increased alongside the input indicators, showing a growth 
of 137.1% from 2014 to 2019, with an annual average growth rate of 18.9%, slightly outpacing the input 
indicators’ growth. In terms of output indicators, NPP during the technology development phase nearly 
doubled between 2014 and 2019. During the achievement transformation phase, there was significant 
growth in the indicators: SBR increased by 90.0%, income from ITA surged by 228.9%, and TBV increased 
more than tenfold. The trends observed in all these indicators are consistent with the principles of 
production theory in economics.

4.2. Calculation of RIE
Considering the presence of lag effects and the division of regional innovation into two stages - 

technology development and achievement transformation - this paper introduces a one-year lag between 
these stages (Fan et al., 2020). Using model (2), we compute the RIE under the influence of the digital 
economy, as shown in Table 2.

Table 2 
Calculation results of RIE scores.

DMU/Year

Beijing

Tianjin

Hebei

Shanxi

Inner Mongolia

Liaoning

Jilin

Heilongjiang

Shanghai

Jiangsu

Zhejiang

Anhui

Fujian

Jiangxi

Shandong

Henan

Hubei

Hunan

Guangdong

Guangxi

Hainan

Chongqing

2014

1

0.5661

0.4907

0.4814

0.4261

0.7355

1

1

0.8511

0.6754

0.6655

0.5386

0.6657

0.5878

0.6369

0.4657

0.6805

0.5968

0.6657

0.5500

0.8216

0.8147

2015

1

0.5623

0.5009

0.5356

0.4981

0.8508

0.9129

1

0.8566

0.6940

0.6751

0.5422

0.7273

0.5923

0.5943

0.4717

0.6926

0.5662

0.7386

0.6021

0.8918

0.8102

2016

1

0.5893

0.5001

0.5110

0.4662

0.7329

0.9099

1

0.7600

0.6056

0.6418

0.5304

0.6529

0.5633

0.5513

0.4519

0.6916

0.5196

0.6790

0.5901

0.8048

0.6993

2017

0.9964

0.6749

0.6097

0.5959

0.6491

0.6986

0.9234

1

0.7892

0.6036

0.6434

0.5837

0.6382

0.6023

0.5634

0.5139

0.6834

0.5651

0.6690

0.7270

0.8411

0.6523

2018

1

0.7104

0.6978

0.5978

0.7237

0.6975

0.9463

1

0.8053

0.6624

0.6746

0.6135

0.6326

0.5780

0.6403

0.5661

0.6426

0.5664

0.6854

0.8095

0.8688

0.7061

2019

0.9964

0.7436

0.7029

0.6223

0.8272

0.7096

0.8838

1

0.8346

0.6041

0.6541

0.5998

0.6063

0.5572

0.6954

0.5397

0.6299

0.5577

0.6670

0.9122

0.9186

0.6586
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From 2014 to 2019, RIE showed an initial increase followed by a slight decline, with the lowest 
point in 2016, before gradually recovering. This trend could be attributed to several factors: in 2016, 
China implemented policies such as the Several Provisions on Promoting the Transformation of Scientific and 
Technological Achievements and the Action Plan for Promoting the Transfer and Transformation of Scientific and 
Technological Achievements. These new policies required time to be effectively implemented and produce 
results, with varying responses and execution across different regions. A potential mismatch between 
technological development and market demand might have contributed to the reduction in innovation 
efficiency. However, with the continuous increase in input indicators and improvements in management 
practices, the effective allocation and utilization of scientific resources were achieved, leading to an 
enhancement in innovation efficiency. Despite these fluctuations, China’s overall innovation capacity 
continued to grow and remained at a high level from 2014 to 2019. Nonetheless, there was a noticeable 
disparity in innovation efficiency across different regions during these six years. Heilongjiang consistently 
maintained high innovation efficiency, with Beijing and Shaanxi also performing well. The relatively high 
innovation efficiency in the two provinces and Beijing municipality reflects the stability of their innovation 
environments and policies during this period. In contrast, other regions experienced fluctuations in 
innovation efficiency, possibly due to factors such as changes in regional policies, economic development 
levels, shifts in technological innovation capabilities, and other external environmental influences.

Fig. 4 illustrates the annual changes in average efficiency scores for all regions in China, with a specific 
focus on the Eastern, Central, Western, and Northeastern regions1. In the Eastern region, the average 
innovation efficiency was 0.704 in 2014 and increased to 0.742 by 2019, indicating a stable upward trend. 
The Central region’s average innovation efficiency started at 0.558 in 2014, experienced fluctuations, but 
ultimately rose to 0.584 by 2019, showing a gradual improvement despite the variability. The Western region 
demonstrated significant progress, with its average innovation efficiency increasing from 0.728 in 2014 to 
0.797 by 2019, particularly during 2017 and 2018. The Northeastern region, which had the highest average 
innovation efficiency in 2014 at 0.912, saw a steady decline to 0.864 by 2019. However, despite this decrease, 
the Northeastern region maintained relatively high innovation efficiency throughout the period. Overall, the 

DMU/Year

Sichuan

Guizhou

Yunnan

Shaanxi

Gansu

Qinghai

Ningxia

Xinjiang

Mean

2014

0.7939

0.7501

0.8451

0.9725

0.9912

0.5772

0.5205

0.7612

0.7042

2015

0.8267

0.7628

0.8651

1

0.9078

0.7324

0.5714

0.6672

0.7216

2016

0.7759

0.7043

0.5828

1

0.8738

0.6016

0.5094

0.6410

0.6713

2017

0.7313

0.9081

0.8117

1

0.9187

0.7931

0.6402

0.8599

0.7259

2018

0.7834

0.9322

0.7642

0.8372

0.9247

0.9552

0.6701

1

0.7564

2019

0.7204

0.7903

0.6672

0.8104

0.8827

0.8478

0.6527

1

0.7431

1 The eastern region includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan; the central 
region includes Shanxi, Anhui, Jiangxi, Henan, Hubei and Hunan; the western region includes Inner Mongolia, Guangxi, Chongqing, 
Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang; the northeast region includes Liaoning, Jilin and Heilongjiang. 
Tibet, Hong Kong, Macao and Taiwan are not included in this study.
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Eastern and Western regions showed notable improvements in innovation efficiency over these six years, 
while the Central region, despite some fluctuations, also exhibited an overall upward trend. The Northeastern 
region, though experiencing a decline, sustained a high level of innovation efficiency. These changes reflect the 
varying innovation capabilities and developmental trends across different regions in China.

Fig. 4. Annual changes in the average innovation efficiency of the four major economic regions.

Fig. 5 illustrates the annual changes in the Theil Index of average efficiency scores across China, 
including the Eastern, Central, Western, and Northeastern regions. Nationally, the Theil Index showed an 
overall downward trend from 2014 to 2019, indicating that regional disparities in innovation efficiency are 
narrowing. In the Eastern region, the Theil Index fluctuated between 2014 and 2019 but generally showed 
a slight decrease, suggesting a reduction in regional disparities in innovation efficiency over this period. 
The Central region’s Theil Index also trended downward, particularly between 2017 and 2019, reflecting a 
significant reduction in inequality of innovation efficiency in this region during these years. Similarly, the 
Western region’s Theil Index decreased overall from 2014 to 2019, with a more pronounced decline after 
2017, indicating a decrease in inequality in innovation efficiency. In contrast, the Northeastern region’s 
Theil Index fluctuated considerably over these six years, with a notable decrease in 2015 followed by an 
increase in subsequent years. Overall, despite fluctuations in the Northeastern region, the Theil Index in 
the other three major economic regions and across all regions showed a downward trend, indicating a 
reduction in inequality of innovation efficiency between 2014 and 2019.

Fig. 5. Annual changes in the Theil index of the four major economic regions.
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4.3. Analysis of regional resource allocation under inverse DEA
In this section, we use Jiangsu’s regional innovation performance in 2019 as an example, with 

an innovation efficiency of 0.6041, to analyze how to optimize and adjust resource allocation using 
the inverse DEA model. Jiangsu was chosen because it ranks first in China in both development and 
the Daily Life Index, making it the province with the highest comprehensive development level and 
leading economic competitiveness. Additionally, it has the largest manufacturing industry cluster in 
the country and attracts numerous high-quality talents. However, its innovation efficiency is relatively 
low. First, we examine how the corresponding output changes when input indicators increase by 1%, 
3%, and 5%, while maintaining Jiangsu’s current efficiency level (0.6041). Next, we explore how the 
corresponding output changes when Jiangsu’s efficiency improves to 0.8000, 0.9000, and 0.9900, with 
input indicators unchanged. Finally, we analyze how the outputs of the entire system change when both 
inputs and efficiency are adjusted. Our analysis is based on Model (4), where the output of the technology 
development stage is considered equally important as the output of the achievement transformation 
stage. The results are presented in Table 3.

Table 3 
Resource optimization and adjustment in Jiangsu.

Initial 
efficiency

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

0.6041

Inputs 
increased by

1%

3%

5%

/

/

/

1%

1%

1%

3%

3%

3%

5%

5%

5%

Efficiency 
increased to

/

/

/

0.8000

0.9000

0.9900

0.8000

0.9000

0.9900

0.8000

0.9000

0.9900

0.8000

0.9000

0.9900

ΔNVP
(piece)

-348,966.0

-326,494.4

-304,022.8

+4,083.1

+190,066.1

+357,450.8

+18,961.8

+206,804.6

+375,863.2

+48,719.0

+240,281.6

+412,687.8

+78,476.3

+273,758.5

+449,512.4

ΔNPP
(piece)

-3,811.9

-2,115.7

-419.5

+22,836.9

+36,875.3

+49,509.8

+23,960.0

+38,138.8

+50,899.6

+26,206.2

+40,665.7

+53,679.2

+28,452.3

+43,192.6

+56,458.8

ΔITA
(million yuan)

+782,255.2

+802,906.1

+823,557.0

+1,550,009.1

+2,030,956.5

+2,512,186.9

+1,568,115.3

+2,053,872.3

+2,539,914.9

+1,604,327.9

+2,099,703.7

+2,595,371.0

+1,640,540.4

+2,145,535.2

+2,650,827.1

ΔTBV
(million yuan)

+262,636.6

+290,384.2

+318,131.8

+1,294,227.7

+1,940,451.8

+2,587,056.0

+1,318,556.1

+1,971,242.4

+2,624,312.7

+1,367,213.0

+2,032,823.8

+2,698,826.1

+1,415,869.8

+2,094,405.1

+2,773,339.6

ΔSBR
(million yuan)

+64,172.7

+68,074.7

+71,976.8

+209,242.0

+300,118.4

+391,048.3

+212,663.2

+304,448.4

+396,287.6

+219,505.7

+313,108.4

+406,766.2

+226,348.1

+321,768.4

+417,244.7

Table 3 reveals that changes in the inputs (RDE, RDP, and ICTC) affect the system’s efficiency. 
Specifically, a 1%, 3%, and 5% increase in RDE, RDP, and ICTC, respectively, leads to a decrease in NVP 
and NPP, while ITA, TBV, and SBR increase. As the input proportions grow, the declines in NVP and NPP 
gradually lessen, while the increases in ITA, TBV, and SBR become more pronounced. In this scenario, the 
system maintains an overall efficiency of 0.6041 by reducing the efficiency of the technology development 
stage and enhancing the efficiency of the achievement transformation stage. Therefore, if Jiangsu aims 
to increase investment while maintaining the current efficiency level, it must focus on enhancing the 
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transformation of scientific and technological achievements while reducing the output of ’low-quality’ 
patents and papers. Additionally, when the original inputs remain constant, increasing system efficiency 
to 0.8000, 0.9000, and 0.9900 results in higher values for NVP, NPP, ITA, TBV, and SBR. Thus, Jiangsu 
needs to address both aspects simultaneously: improving the high-quality output of patents and papers 
and accelerating the transformation and implementation of scientific and technological achievements. 
This should be done alongside efforts to enhance the efficiency of both technology development and 
achievement transformation. Finally, when both input indicators and efficiency are increased, the gains 
in NVP, NPP, ITA, TBV, and SBR are even more significant. Other regions can similarly optimize their 
resource allocation following this analysis.

5. Conclusion, Discussion, and Recommendations

5.1. Conclusion and discussion
This study constructs a RIE evaluation system driven by the digital economy and employs a two-

stage inverse DEA model to provide a comprehensive measurement of RIE across China. Through an 
empirical analysis of Jiangsu Province, the study not only demonstrates the advantages of this model in 
optimizing resource allocation but also offers practical insights for enhancing regional innovation in the 
context of the digital economy. 

The results indicate that from 2014 to 2019, China’s overall RIE improved steadily, with the eastern 
and western regions experiencing significant growth in innovation efficiency. This is due to factors such 
as policy support, abundant innovation resources, and strong economic foundations in these regions. 
However, the northeastern region faced a slight decline, reflecting challenges related to traditional 
industries and talent outflow (Lan and Zhao, 2020; Guo et al., 2023). In terms of resource allocation in 
Jiangsu Province, the study highlights that maintaining innovation efficiency requires reducing output 
in the technology development stage while enhancing output in the transformation stage when input 
increases. To further improve RIE, output in both stages must be optimized simultaneously. This 
underscores the importance of not only focusing on technological development but also enhancing 
mechanisms for the commercialization of technological achievements (Irtyshcheva et al., 2022; Cao et al., 
2023; Guo et al., 2023).

The theoretical significance of this study is reflected in two key innovations. First, traditional RIE 
research mainly relies on economic factors such as physical capital, labor, and R&D investment as core 
indicators for evaluation. These models fail to fully capture the complexity of innovation activities in the 
digital economy era. For example, many traditional studies (Bai, 2013; Chen et al., 2018; Wang and Zhang, 
2022) adopt singular innovation input and output indicators, overlooking the impact of digitalization 
on innovation activities. In contrast, this study expands the scope of RIE evaluation by incorporating 
indicators such as digital capital, digital industrialization, and industrial digitization, ensuring that 
the evaluation is more timely and relevant. This improvement not only makes the assessment more 
comprehensive but also addresses the gap in existing studies that neglect the digital economy’s influence.

Second, most existing literature uses traditional DEA models to evaluate RIE, primarily focusing 
on measuring innovation efficiency while lacking correlation analysis in multi-stage resource allocation 
(Wang and Zhang, 2022; Guo et al., 2023). In contrast, this study is the first to apply the inverse DEA 
model to the production system of regional innovation evaluation, proposing a new pathway for 
optimizing resource allocation by dividing the technological development stage and the transformation 
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stage. This method helps identify resource bottlenecks in regional innovation and provides a theoretical 
basis for resource distribution across different stages.

From a practical perspective, the findings has many implications for regions aiming to enhance 
their innovation efficiency. Unlike most existing research that focuses on increasing R&D investment 
and improving the efficiency of technological development (Bai, 2013; Chen et al., 2018; Fan et al., 2020), 
this study emphasizes the coordinated development of both the technology development phase and the 
transformation stage. Traditional research tends to overemphasize the investment in the technological 
development stage while neglecting the mechanisms for transforming innovation outcomes into 
marketable products. These studies recommend increasing R&D input and fostering innovation talent, 
but they fail to effectively address the real-world challenges in the commercialization of innovation 
outcomes. Through the analysis of the inverse DEA model, this study points out that when resource 
input increases, both the technology development stage and the transformation stage must be optimized 
simultaneously, or else resource waste or delays in the commercialization process will occur. This finding 
sharply contrasts with traditional views and highlights the need for balance and systematization in the 
innovation process.

5.2. Recommendations
Based on the above analysis, in order to implement innovation-driven development and enhance RIE, 

this study provides the following recommendations: First, it is essential to recognize the importance of the 
digital economy in driving regional innovation. The digital economy, through the widespread application 
of digital technologies, propels economic growth and transformation. It not only fosters the emergence 
of new industries and business models but also enhances the efficiency of traditional sectors. To support 
this, it is necessary to increase investment in digital infrastructure, including the construction of 5G 
networks, data centers, and cloud computing platforms. Such investments will provide robust support for 
regional innovation and promote the healthy development of the digital economy. Additionally, policies 
should be formulated to facilitate the digital transformation of small and medium-sized enterprises (SMEs) 
and traditional industries. For instance, financial subsidies and tax incentives could encourage businesses 
to adopt digital technologies, thereby enhancing production efficiency and innovation capabilities. 
Moreover, support should be provided for the comprehensive application of digital technologies across 
various industries, particularly in manufacturing, agriculture, and services. Establishing pilot projects and 
demonstration zones can effectively showcase how digital technologies can drive industrial upgrading 
and innovation (Chen, 2022; Liu and Zheng, 2022; Wang and Cen, 2024).

Second, we should focus on producing high-quality results and promoting the transfer and 
transformation of scientific and technological achievements. This can be achieved by establishing more 
technology innovation incubators, accelerators, and technology transfer centers to provide market-oriented 
support and services for research outcomes. Additionally, it’s essential to establish and optimize processes 
and mechanisms for technology transfer, which includes simplifying patent application procedures and 
strengthening intellectual property protection. Simultaneously, we must promote collaboration between 
industry and academia to facilitate the commercialization of research achievements. Encouraging corporate 
R&D investment through tax incentives and subsidy policies will motivate companies to increase their 
R&D spending, particularly in high-tech fields. Furthermore, supporting partnerships among businesses, 
universities, and research institutions will help in jointly developing innovative results with significant 
market potential (Su and Yan, 2020; Xiong et al., 2020; Lou et al., 2024).

16
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Third, we should optimize resource allocation among different regions. This involves developing 
differentiated resource allocation policies based on each region’s innovation potential and development 
needs. For regions with weak innovation foundations, we should increase investment in infrastructure 
and R&D; conversely, for regions with strong innovation capabilities, the focus should be on supporting 
technology transfer and market application. We must encourage innovation cooperation between 
developed eastern regions and the central, western, and northeastern regions by sharing technology 
resources and innovative experiences. Establishing cooperation mechanisms and platforms between 
regions will promote the exchange and sharing of resources and information. Additionally, it is essential 
to implement targeted support policies that consider the specific development stages and characteristics 
of each region. For instance, eastern regions could prioritize support for high-end technology R&D, while 
central and western regions might focus on industrial transformation and infrastructure construction. 
Meanwhile, northeastern regions should address talent retention and the upgrading of traditional 
industries (Xiong et al., 2020; Wu et al., 2023; Lou et al., 2024).

This study also has some limitations: First, regional innovation is a complex system, and this paper 
only considers representative input-output indicators to measure innovation efficiency. Future research 
could further refine the connotations of the digital economy and improve the evaluation system for RIE 
driven by the digital economy. Second, this paper uses a simple two-stage system to evaluate the regional 
innovation process. In practice, there are also production structures involving input sharing between the 
two stages, as well as output feedback structures from the second stage to the first stage. This will be a 
direction for future research.
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