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Abstract
Given the significant role of the high-tech industry (HTI) in the national development, it is crucial to 

promote its balanced and efficient development. This study aims to investigate the innovation efficiency 
(IE) of the HTI of China’s mainland from 2009 to 2019 and find practical paths of driving its sustained 
development. Using an integrated approach within the data envelopment analysis framework, we obtain 
both static and dynamic IE, of which we also conduct in-depth temporal and spatial analysis based on 
the Moran index. The results show an uneven and spatially correlated distribution of the IE, and the 
technological upgrading is identified as the main way of improving the efficiency. Furthermore, the Tobit 
regression analysis is applied to explore the impact of environmental factors on the IE from the macro 
perspective. The per capita GDP and the number of R&D institutions reveal a significantly positive effect 
on the improvement of the IE. Based on our main findings, we also put forward corresponding policy 
suggestions to enhance the competitiveness of this industry in China.
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1. Introduction

The experience of numerous countries has confirmed the importance of innovation activities of 
the high-tech industry (HTI) (Hong et al., 2016; Yu et al., 2021). As a matter of fact, to accelerate the 
development of the HTI, many countries proposed policies and plans to stimulate high-tech innovations. 
For instance, “The Federal Big Data Research” was introduced by the United States. “The High-tech 
Strategy 2025” was proposed by Germany. Japan introduced the “Semiconductor Digital Industry 
Strategy”. Similarly, the innovation activities of HTI can significantly benefit the growth of China’s 
economy. China also launched a series of initiatives in the field of innovation, including “Made in China 
2025”, and “The 13th Five-year Plan on Emerging Sectors of Strategic Importance”. While the HTI receives 
strong support from the state, it is necessary to take full advantage of various resources and promote 
efficiency to create more possibilities for the country. 

The improvement of technology and the swift growth of the market demand help develop HTI 
rapidly in China (An et al., 2020). As is shown in Fig. 1, with the development of HTI in China, internal 
expenditure on research and development (R&D) and the revenue from main business in China’s HTI has 
maintained a continuous growth trend. Concretely, the annual average rate of growth of the revenue from 
the main business of the HTI was 10.29% between 2009 and 2019. The annual average rate of growth of 
internal expenditure on R&D was 15.60%. However, the prompt growth rate of the total scale of HTI did 
not synchronize with the regional innovation development status in China.

Fig. 1. Development trends of China’s HTI

Previous studies have shown that China’s innovation strength still lags that of several developed 
countries (Chen et al., 2022; Chen et al., 2019). Under the circumstances of the changing economic 
environment and limited resources, precise positioning for vulnerable regions and effective innovation 
efficiency (IE) improvement become the top priorities for promoting the innovation strength in China. 
Hence, it is necessary to conduct accurate measurement on the IE of HTI in China and identify its 
spatial features, so that the corresponding tactics can be made to promote the sustainable and balanced 
development of this industry. Besides, it also plays a significant part in clarifying the influencing factors 
on the IE, which is helpful for the policy-making of the HTI. 
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Among different efficiency measurement techniques, the data envelopment analysis (DEA) method 
is one of the most used approaches in measuring IE (Chiu et al., 2012; Wang et al., 2013; Wang and Zhang, 
2018). DEA models obtained widespread applications because of their ability to deal with cases with 
multiple inputs and multiple outputs and the advantage of not having to preset the production function 
forms (Banker et al., 1984; Charnes et al., 1978). Nevertheless, traditional DEA models fail to take the slacks 
in input and output variables into consideration and make a distinction among efficient decision-making 
units (DMUs). The super-efficiency DEA model overcomes the difficulty of distinguishing among efficient 
DMUs, and the slack-based measurement (SBM) model improves the ability of DEA models to identify 
slack variables (Tone, 2002, 2001; Yang et al., 2019). However, few studies employed the temporal and 
spatial analysis simultaneously to estimate the IE and explore the regional development path of the HTI 
in China. There is also a lack of research on the influencing factors of the IE of the HTI in China. To fill this 
gap, we aim to investigate the IE of the HTI in China's mainland using an integrated DEA approach. The 
main contributions of this article can be divided into three parts. First, it provides a research perspective 
that combines both static and dynamic analyses on the IE. Second, spatial analysis is conducted on the IE, 
and the clustering of HTI and the excessive disparity between regions in R&D intensity are discovered. 
Third, environmental factors that affect the IE of HTI in China are detected from a macro perspective.

The paper is structured in the following manner. Section 2 reviews and discusses the corresponding 
literature. In Section 3, we present our employed integrated DEA approach that combines both the super-
SBM model and the Malmquist index. Section 4 describes the selected indicators and data sources and 
includes our empirical results and the corresponding analysis. The policy implications are proposed in 
Section 5. Section 6 concludes this paper.

2. Literature review

2.1. Definition and development of the HTI
Fagerberg et al. (1997) proposed the concept of high technology firstly, which clarifies the concept 

of high technology and makes it clear that the high technology is established at the frontier of modern 
science and technology. China issued the Notice of Statistical Classification Catalogue of the High-tech 
Industry in 2002 and defined the HTI as a manufacturing industry in which R&D expenditure accounts 
for a large proportion of the main business income. The component parts of this industry include five 
categories, namely manufacture of medicines, manufacture of electronic equipment and communication 
equipment, manufacture of computers and office equipment, manufacture of medical equipment and 
metres, and manufacture of electronic chemicals.

As an intelligence-intensive industry with high technology penetration, the leading technology 
innovation ability becomes the core competitiveness of this industry (Zhou et al., 2023). As the global 
competition in science and technology intensifies and countries gradually increase their investment in this 
industry, it is gradually taking on the characteristics of high value-added, high risk, and high investment 
(Evenson and Westphal, 1995). For high-tech industries and enterprises, the improvement of their IE and the 
formation of their competitive advantages is established on the rational use of investments and resources in 
conducting technology introduction and independent innovation activities (Schumpeter, 2010).

The HTI started relatively late in China and was affected by the unbalanced regional economy, which 
led to obvious differences in the layout and development stage of the industry in different regions (Chen 
et al., 2020). Concretely, the reserve of talents, technological and policy environment, and investment 
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and government support for high-tech enterprises vary greatly among different regions, which all have 
important influences on the IE (Lin et al., 2012). Hence, all regions in China should identify their IE 
under given resources, explore practical paths to improve the IE, and formulate reasonable industrial 
development strategies according to their local conditions.

2.2. IE assessment in the HTI
Innovation activities have substantially improved the competitiveness of enterprises and 

organizations, making more and more scholars carry out research on IE evaluation in different fields, in 
which many performance evaluation methods have been adopted, such as the analytic hierarchy process 
(AHP), stochastic frontier approach (SFA), multi-criteria decision-making (Chonghui Zhang et al., 2022), 
DEA (Wang et al., 2023), etc. Pan et al. (2020) estimated the green innovation ability of manufacturing 
enterprises using the AHP-OVP (Osculating Value Process) model. Piao et al. (2022) measured the 
technological IE of energy companies in China during the period from 2008 to 2017 using a multiple 
input-output SFA model. They found that the technological IE of listed energy companies was declining. 
Zhong et al. (2021) applied a super-SBM model to measure the IE of China's regional rural commercial 
banks. The non-parametric Malmquist method was applied by Gurjar et al. (2021) to calculate the 
technological efficiency and the total factor productivity change index of a group of banks during the 
time span between 2008 and 2017. The abovementioned studies illustrate that the IE has gained extensive 
concern in academia. 

Specifically, a group of previous research conducted the studies on IE in the HTI from both regional 
and industrial perspectives. In terms of the regional investigation, Guan and Chen (2010) provided 
systematic IE measures and conducted empirical analysis on Chinese HTI. Broekel et al. (2018) applied 
a shared input DEA approach to study the regional IE in Germany. Kalapouti et al. (2020) demonstrated 
that there were regional differences in the IE of 192 European regions. Zou et al. (2021) presented a super-
SBM model to measure high-tech IE in China and indicated great differences within regions. In terms of 
the industrial investigation, the SFA and DEA methods were employed by Perelman (1995) to measure 
the inter-departmental innovation total-factor productivity of eight industrial sectors of OECD member 
countries, and the results revealed that technological progress and improvement of technical efficiency 
could promote the improvement of innovation total-factor productivity. Nasierowski and Arcelus (2003) 
measured the industrial IE of 45 countries and illustrated that IE was related to R&D resource allocation. 
The two-stage network DEA was adopted by Wang et al. (2020) in measuring IE, concluding that the 
overall efficiency was relatively low and that there were great differences among China's five high-tech 
sub-industries. Chen et al. (2021) applied a dynamic network SBM model to evaluate the industrial IE. 
These works enriched the regional and industrial studies on IE of HTI to a certain extent.

2.3. DEA-based IE investigations
Based on studies in the previous subsection, IE investigations mainly focused on the quantitative 

research, in which the underlying methods include parametric and non-parametric types. The parametric 
method is mainly based on the SFA model, whose application highly depends on the predetermination of 
the form of the production function. Besides, the SFA approach cannot deal with the evaluation of DMUs 
with multiple outputs. On the contrary, the non-parametric type is mainly founded on the DEA model. 
There is no need for DEA models to decide the specific form of the production function ahead of time, 
which effectively avoids the subjective deviation. Hence, it received widespread applications in recent years. 
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In the framework of DEA, the CCR model is regarded as the seminal work that was proposed on the ground 
of the concept of efficiency (Charnes et al., 1978), followed by the BCC model based on the incorporation of 
the variable returns to scale assumption (Banker et al., 1984). These traditional radial DEA models contribute 
greatly to studies on the IE (Carayannis et al., 2016; Diaz-Balteiro et al., 2006; He et al., 2021). 

However, traditional radial DEA models have certain boundedness in the study of IE. On the one 
hand, traditional radial models only consider the proportional improvement of all inputs or outputs, 
without considering the possibility of non-proportional improvements (Yu et al., 2021). On the other hand, 
traditional DEA models usually generate more than one efficient DMUs, and it is difficult to distinguish 
between them. Therefore, kinds of advanced DEA models were proposed in recent decades, e.g., the 
SBM model and the super-efficiency model. The non-radial SBM model was established to measure the 
production efficiency by taking both input and output slacks into account when evaluating the efficiency 
of DMUs (Tone, 2001). The super-efficiency model was also put forward to distinguish the differences 
between efficient DMUs (Tone, 2002). To conduct the IE measurement, Piao et al. (2017) adopted the 
super-efficiency DEA to measure the IE among different kinds of companies. The SBM model was applied 
by Lv et al. (2021) to calculate the green technology IE. 

Furthermore, plenty of research also conducted productivity investigations based on DEA methods. 
Malmquist proposed the Malmquist index to evaluate the change in the indifference curve in a 
consumption function (Malmquist, 1953). Färe et al. (1997) brought it in measuring the ratio of distance 
functions later and obtained broad application. The Luenberger productivity index is another important 
productivity index, which can accommodate the improvement of undesirable outputs (Chambers et al., 
1996). These indices are also widely used in the performance assessment among different fields. In the 
field of innovation activity evaluation, the IE of listed banks was measured by Jiang and He (2018) based 
on the Malmquist index. Wang et al. (2018) applied the SBM model measuring the green total factor 
productivity to evaluate the green innovation activities.

In summary, to overcome the shortcomings of traditional DEA models, previous studies have used 
several advanced models to analyse the IE, e.g., the SBM model, the supper-efficiency model, and the 
network model. However, few studies have considered both temporal and spatial analysis on the IE, 
simultaneously. Hence, this paper intends to measure the regional IE of HTI in China based on the DEA 
approach, integrating the super-SBM model and the Malmquist index. Besides, the Moran indices and 
regression techniques are also used to conduct the corresponding spatial and correlation analysis.

3. Methodology

In this Section, the super-SBM model is first introduced to measure the static IE. To further conduct 
the dynamic analysis on the IE, we then construct the Malmquist index with its decompositions based on 
the static IE.

3.1. The super-SBM model
Suppose that there are a group of n DMUs being evaluated, the vectors of inputs and outputs of 

DMUj(j=1,2,...,n) during time t(t=1,2,...,T) are defined as xij
t(1,2,...m) and yrj

t(r=1,2,...q). Denoting the weight 
coefficient of DMUj as λj, the production possibility set (PPS) Pt constructed from DMUs can be defined as:

	  	                                                                                                                                                         (1)Pt={(xt, yt)|xi
t ≥ Σn

j=1xt
ijλj, Ɐi, yt

r ≤ Σn
j=1yt

rjλj, Ɐj,λj ≥ o, Ɐj}
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which contains all referenced DMUs to construct the benchmarking production frontier. Furthermore, 
we define the slacks in inputs and outputs as si

_ and sr
+, which are the excess input and output shortfalls 

of DMUs, respectively. Under the assumption of variable returns to scale (VRS), the efficiency value θt(xt, 
yt) can be measured by the non-oriented SBM model (Tone, 2001): 

		                                                                                                                                           	 (2)

of which the objective function optimizes both input and output slacks and realizes the projection 
with both input and output improvement. Hence, the DMUk can be considered as SBM-efficient if 
si

_
=sr

+=0(Ɐi, Ɐr) holds. Equivalently, the DMUk is SBM-efficient if θt(xt, yt)=1. To make distinction between 
these efficient DMUs, Tone (2002) and Fang et al.(2013) further incorporated the super-efficiency idea and 
proposed the super-SBM model:

	

(3)

in which n_1 referenced DMUs other than the specific evaluated DMUk are utilized to construct 
the benchmarking production technology. However, input or cost saving and output improvement are 
not always equally important in practical problems. For instance, some high-tech inventions can give 
a country a head start in the scientific and technological competition, then the cost saving becomes 
secondary importance. To accommodate these output-oriented application scenarios, e.g., the IE 
evaluation of the HTI, we further modify model (3) into an output-oriented super-SBM model as follows:

	

                                                                                                                                                                               (4)
                      
The super-SBM model allows for the efficiency value to be greater than unity. Therefore, it is 

conducive to the precise ranking of the IE of China’s HTI.
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3.2. The Malmquist index and its decompositions
The super-SBM model facilitates the static IE measurement, while the problem of incomparability of 

efficiency results between different periods still exist. Hence, to conduct the dynamic analysis on the IE 
and further explore the internal influencing mechanism within the HTI in China, we further restructure 
the Malmquist index (Färe et al., 1997) based on the IE obtained in subsection 3.1. 

Through a combination of the two adjacent periods  and  for the referenced and evaluated DMUs, we 
can measure four kinds of IE, θt(xt, yt), θt(xt+1, yt+1), θt+1(xt+1, yt+1), and θt+1(xt, yt). Therefore, we can restructure 
the Malmquist index as follows:  

		                                                                                                                                                          (5)

As a result, if  , it means that the productivity has increased compared with the previous period (Song 
et al., 2019). If , it means that the productivity remains the same as the previous period. Besides,  indicates 
that the productivity is lower than the previous period. 

Furthermore, we recombine the IE in model (5) and obtain the following decomposition of the 
Malmquist index: 

	
                                                                                                                                                                                (6)

where the first decomposed item represents the relative change of the contemporaneous efficiency 
for the evaluated DMU of the two adjacent evaluation periods. In other words, it reflects the efficiency 
change (EC) effect. If EC is higher than unity, it indicates that the DMU has made significant progress 
by approaching the production frontier. The second decomposed item reflects the change of frontiers 
between the two periods, i.e., the technical change (TC) effect. The result of TC greater than unity 
indicates that organizational behaviour leads to the forward change of the production frontier by way of 
technological progress (Xiong et al., 2018).

3.3. The Moran indexes
 The Moran Index is a prevalent tool in analyzing the spatial correlation of economic variables 

(Fan and Myint, 2014). As a result, positive values indicate that a local improvement of the explanatory 
economic variable has a positive impact on the surrounding area, whereas negative values signify 
a negative impact accordingly. Besides, if the value of the Moran index is around zero, there is no 
significant spatial relationship between the variables (Liu et al., 2022). When conducting spatial correlation 
impact analysis, attention should be paid not only to the positive or negative type of such impact, but also 
to the significance of such impact. In this case, the Z-score is one of the most used tools. Consequently, the 
significant spatial correlation (e.g., at the 95% confidence level) between adjacent regions exists when the 
absolute value of the Z-score exceeds 1.96 (Zhang et al., 2022). 

3.4. The Tobit regression model
In addition to the input and output indicators within the super-SBM model that directly affect the 

IE, some uncontrollable external factors may also have impact on the regional innovation activities 
and indirectly affect the IE. There are some approaches in evaluating the impact of external factors on 
difference kinds of efficiency, e.g., the Tobit regression model and the bootstrap regression model. In this 
paper, efficiency scores obtained from DEA models locate in the interval between one and unity, which 
means the explained variable is double censored. In addition, previous research based on the Monte Caro 

M(yt+1, xt+1, yt, xt)=[     ×                     ]
θt(xt+1, yt+1)

θt(xt, yt)
θt+1(xt+1, yt+1)

θt+1(xt, yt)

½

M(yt+1, xt+1, yt, xt)=                    [      ×                 ] =EC×TC
θt(xt+1, yt+1)

θt+1(xt+1, yt+1)
θt+1(xt+1, yt+1)

θt(xt, yt)
θt(xt, yt)

θt+1(xt, yt)

½
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experiments have shown that the Tobit regression estimator performs well in a certain case (Banker and 
Natarajan, 2008). Therefore, the Tobit regression model is adopted in this paper to improve the accuracy 
and integrity of the research. The following equation is the standard Tobit model:

	                                                                                                                                                          	 (7)

	  	                                                                                                                                                         (8)

Here y*
it is the latent variable, and yit is the dependent variable. Xit is the vector of independent 

variables, β is the vector of correlation coefficients; and εit is the random error term and εit~N(0, 2).

4. Empirical analysis

4.1. Variables and data sources
To conduct empirical investigation on the IE of the HTI, this study selects 28 provincial-level 

administrative regions in China as evaluated samples, in which Qinghai province, Xinjiang Uygur 
Autonomous Region, Tibet Autonomous Region, Hong Kong Special Administrative Region, Macao 
Special Administrative Region and Taiwan province are not included because of the unavailability of 
data. Following the existing research, the innovation input of the HTI is separated into human input 
and capital input. The full-time equivalent of R&D personnel and the internal expenditure on R&D are 
the core indicators of technological R&D (Aytekin et al., 2022), which represent the technological R&D 
investment carried out by universities, research institutions and R&D departments of enterprises (Liu et 
al., 2020). Therefore, the full-time equivalent of R&D personnel is used as the proxy of human input. The 
internal expenditure on R&D is applied as the proxy of capital input. 

Moreover, based on the relevant literature, patent applications quantitatively represent industrial 
innovation capabilities (Chen et al., 2022; Cruz-Cazares et al., 2013). Revenue from new product 
sales reflects the direct economic value of new products, the stage of technology application, and 
commercialization carried out by core enterprises. That is, economic benefits are obtained through new 
product sales (Piao et al., 2017). Consequently, the number of patent applications and revenue from new 
product sales are chosen as innovation output indicators. 

Concretely, information about technological invention and creation is contained in the indicator 
of patent applications. Market-related information is included in the revenue from new product sales. 
Therefore, these input and output indicators can better reflect the commercialization levels of innovation 
achievements. Our data are mainly collected from China Statistics Yearbook of the High Technology 
Industry (CSYHTI). Please see more detailed information in Table 1.

Table 1 
Input and output indicators of China’s HTI.

y*
it=βXit+εit

yit={y*
it  if  y*

it <0
0  if  y*

it ≥0

Indicators

The full-time equivalent of R&D personnel

Internal expenditure on R&D

Revenue from new product sales

Patent applications

Types

Input

Output

Units

Man-year

1 billion yuan

1 billion yuan

Piece

Data sources

CSYHTI

CSYHTI

CSYHTI

CSYHTI
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To deal with influences of price fluctuations on revenue from new product sales and internal 
expenditure on R&D, two different deflators are incorporated. The indicator of the revenue from new 
product sales is handled by the deflator of Producer Product Index (PPI). Because of the time lag of the 
R&D activities, we convert the internal expenditure on R&D into the stock of internal expenditure. Before 
calculating the stock of internal expenditure on R&D of the HTI in each province, the indicators of the 
internal expenditure on R&D are handled by the deflator of a high-tech R&D Price Index. The high-tech 
R&D price index used here can be calculated by adding 54% of the Fixed Asset Investment Price Index 
and 46% of the Consumer Price Index. Some missing values are treated with linear interpolation (Zhong 
and Wang, 2021).

The descriptive statistics of the indicators are conducted (see Table A in the Appendix). As is shown 
in Table A, the differences between the maximum and minimum values of the indicators are significant. 
What’s more, the standard deviation is greater than the mean. Considering the investment and production 
in HTI, we can infer that there are large gaps among the IE of HTI in the 28 provincial-level administrative 
regions.

4.2. Temporal analysis
4.2.1. Static analysis of the IE of the HTI in China
Based on the super-SBM model, the IE and its average value of the HTI in the 28 sample provincial-

level administrative regions from 2009 to 2019 in China are shown in Table 2. It is noteworthy that the 
annual IE of the HTI between 2009 and 2018 is less than 0.3 among Heilongjiang, Shaanxi, and Hainan 
provinces. Moreover, the trend of the IE between 2009 and 2019 of Guizhou, Hebei, Shanxi, and Jilin 
provinces is not stable. It shows a state of cyclicality. Meanwhile, there is an obvious upward trend in the 
IE in Gansu, Liaoning, Hubei, Jiangxi, Chongqing, Henan, and Jiangsu provinces and Guangxi, Ningxia, 
and Inner Mongolia autonomous regions, while presenting a fluctuating downward trend in Tianjin 
municipality from 2009 to 2019. It is relatively stable with a small fluctuation range in Fujian, Hunan, 
Shanghai, Shandong, Sichuan, Zhejiang, and Anhui provinces, and Beijing municipality. The IE of the HTI 
in Yunnan decreases from 1.101 in 2009 to 0.444 in 2019. Notably, the annual IE of the HTI in Guangdong 
province is at the highest level.

Table 2
China’s IE of the HTI in 28 provincial-level administrative regions.

DMUs

Beijing

Tianjin

Hebei

Shanxi

Inner Mongolia

Liaoning

Jilin

Heilongjiang

Shanghai

Jiangsu

2009

1.197

1.508

0.265

0.362

0.362

0.306

0.550

0.085

0.795

1.053

2010

1.388

1.454

0.281

0.81

0.410

0.400

0.252

0.077

0.726

0.754

2011

1.328

0.968

0.244

0.387

1.000

0.592

0.449

0.136

0.710

1.186

2012

1.276

1.215

0.326

0.724

1.000

0.423

0.588

0.161

0.593

1.208

2013

1.125

1.233

0.270

0.258

0.754

0.429

0.457

0.114

0.511

1.088

2014

1.132

1.045

0.314

0.343

0.373

0.442

0.473

0.164

0.630

1.117

2015

1.081

0.658

0.264

0.294

0.457

0.424

0.378

0.133

0.607

1.114

2016

0.930

0.746

0.329

0.186

0.378

0.777

0.502

0.221

0.602

1.070

2017

0.706

0.539

0.291

0.389

2.248

0.485

0.289

0.123

0.529

0.878

2018

0.962

0.602

0.463

0.410

1.109

0.656

0.511

0.190

0.719

0.878

2019

1.163

0.636

0.824

0.465

1.070

0.470

0.635

0.439

0.803

0.814

Average

1.117

0.964

0.352

0.400

0.833

0.491

0.462

0.168

0.657

1.014
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We further depict Fig. 2 to analyse the characteristics of the average IE. As can be observed from Fig. 
2, the average score varies greatly among provincial-level administrative regions. The highest average 
IE of HTI is in Guangdong province. The main reason is that Guangzhou, the provincial capital of 
Guangdong, became one of the first state-level high-tech zones approved by the State Council in 1991. Its 
geographic location, economic strength, and infrastructure are conducive to the development of the HTI 

DMUs

Zhejiang

Anhui

Fujian

Jiangxi

Shandong

Henan

Hubei

Hunan

Guangdong

Guangxi

Hainan

Chongqing

Sichuan

Guizhou

Yunnan

Shaanxi

Gansu

Ningxia

2009

0.675

1.000

0.657

0.227

0.722

0.406

0.357

0.346

2.204

0.316

0.210

0.751

0.477

0.253

1.101

0.187

0.298

0.587

2010

0.511

1.181

0.676

0.271

0.738

0.377

0.342

0.337

2.836

0.288

0.066

0.701

0.217

0.346

0.613

0.230

0.531

0.540

2011

0.650

1.274

0.633

0.285

0.721

0.366

0.427

1.017

1.898

0.466

1.082

1.277

1.046

0.270

0.655

0.286

0.448

1.108

2012

0.745

1.243

0.657

0.352

0.697

0.360

0.457

0.661

1.882

0.501

0.422

0.801

0.669

0.337

0.646

0.229

0.568

1.410

2013

1.052

1.195

0.574

0.346

0.640

1.382

0.355

0.835

1.958

0.507

0.206

0.592

0.614

0.143

0.361

0.165

0.356

1.226

2014

0.685

1.247

0.494

0.517

0.627

1.432

0.371

0.726

1.835

0.484

0.170

0.958

1.006

0.180

0.433

0.189

0.481

0.377

2015

0.882

1.209

0.593

0.472

0.793

1.298

0.460

0.610

1.829

0.413

0.127

1.212

1.009

0.201

0.254

0.220

0.478

0.342

2016

0.773

1.244

0.675

0.909

0.756

1.338

0.601

0.703

2.015

0.566

0.073

1.042

1.018

0.417

0.376

0.272

0.420

0.664

2017

0.679

1.185

0.509

0.685

0.704

1.237

0.487

0.510

2.433

0.514

0.192

1.028

0.585

0.294

0.291

0.221

0.447

0.491

2018

0.709

1.123

0.614

1.026

0.720

1.371

0.835

0.606

2.652

1.031

0.193

0.938

0.477

0.449

0.377

0.236

0.612

0.792

2019

0.802

1.010

0.722

1.312

0.635

1.088

0.885

0.738

2.736

1.124

0.231

1.032

0.781

0.494

0.444

0.407

0.598

1.180

Average

0.742

1.174

0.618

0.582

0.705

0.969

0.507

0.644

2.207

0.564

0.270

0.939

0.718

0.308

0.505

0.240

0.476

0.792

Table 2. (continued)

Fig. 2. The average IE of the HTI in 28 provincial-level administrative regions.
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in Guangdong. The lowest average IE of HTI is in Heilongjiang province. As an industrial province, the 
development of innovative industries there is insufficient. Meanwhile, unfavorable geographical location 
and low investment in R&D lead to the lowest average IE of HTI in this province.

According to a report of the Development Research Centre of the State Council in China, China’s 
mainland can be divided into eight economic zones geographically. The IE of the HTI in eight economic 
zones is shown in Table 3. Overall, the IE of HTI in China shows an increasing trend. In terms of time, from 
2009 to 2019, the IE of the HTI in the middle region of the Yellow River, the middle region of the Yangtze 
River, the Southwest of China, the Northwest of China, and the Northeast of China all show an increasing 
trend. Among them, the annual average rate of growth of the IE of the HTI in the middle region of the 
Yellow River is 8.69%, which is the region with the highest growth rate. On the other hand, the IE of the HTI 
in the northern and eastern coastal regions slightly decreased. The annual average rate of growth of the IE 
of the HTI in the northern coastal region is -1.24%. It is lower than the annual average rate of growth of the 
eastern coastal region. The IE of the HTI in the southern coastal region develops stably.

Table 3 
The IE of the HTI in eight major economic zones.

Regions

The northeast of China

The northern coast of China

The eastern coast of China

The southern coast of China

The middle region of the 
Yellow River in China

The middle region of 
theYangtze River in China

The southwest of China

The northwest of China

2009

0.314 

0.923 

0.841 

1.024 

0.329 

0.483 

0.580 

0.443 

2010

0.243 

0.965 

0.664 

1.193 

0.399 

0.533 

0.433 

0.536 

2011

0.392 

0.815 

0.849 

1.204 

0.510 

0.751 

0.743 

0.778 

2012

0.391 

0.879 

0.849 

0.987 

0.578 

0.678 

0.591 

0.989 

2013

0.334 

0.817 

0.883 

0.913 

0.640 

0.683 

0.443 

0.791 

2014

0.360 

0.779 

0.811 

0.833 

0.584 

0.715 

0.612 

0.429 

2015

0.312 

0.699 

0.868 

0.850 

0.567 

0.688 

0.618 

0.410 

2016

0.500 

0.690 

0.815 

0.921 

0.544 

0.864 

0.684 

0.542 

2017

0.299 

0.560 

0.695 

1.045 

1.024 

0.717 

0.542 

0.469 

2018

0.452 

0.687 

0.769 

1.153 

0.782 

0.897 

0.654 

0.702 

2019

0.515 

0.814 

0.807 

1.230 

0.757 

0.986 

0.775 

0.889 

Average

0.374

0.784

0.805

1.032

0.610

0.727

0.607

0.634

To compare the difference of IE more clearly among different regions, we depict a radar map of the 
distribution of the average IE of the HTI in eight economic zones from 2009 to 2019 in China in Fig. 3. 
The overall IE shows the following pattern: Southern coast > Eastern coast > Northern coast > the middle 
region of the Yangtze River > the Northwest of China > the middle region of the Yellow River > the 
Southwest of China > the Northeast of China.

Fig. 3. The average IE of the HTI in eight economic zones.
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4.2.2 Dynamic analysis of the Malmquist index of the HTI in China
To analyse the IE of the HTI from a dynamic perspective, we calculate the Malmquist index through 

the models in subsection 3.2. We show the results of the Malmquist index and its decomposition 
components in Tables B1 to B3 in the Appendix. Integrating the results, Table 4 shows the average 
values at different periods. The average change rate of the Malmquist index of the HTI in the 28 sample 
provincial-level administrative regions in China is greater than the unity for nine consecutive years. 
From the perspective of change trends, the Malmquist index of the HTI in China from 2009 to 2019 shows 
a trend of fluctuating growth, and the annual average rate of growth is 3.9%. From the decomposition 
results, the mean values of technical efficiency (EC) and technological progress efficiency (TC) from 2009 
to 2019 also show a trend of fluctuating growth, which is consistent with the Malmquist index trend of 
the HTI. The annual average rate of growth of EC is 1.98%, and that of TC is 2.04%. It indicates that the 
improvement of the Malmquist index of the HTI innovation in China is the result of the comprehensive 
effect of both EC and TC. The decline in Malmquist index of the HTI in China is significant from 2017 
to 2018 which is mainly because the value of TC is less than the unity. It indicates that the decline in 
Malmquist index in the HTI is mainly caused by TC. It further suggests that China's 28 sample provincial-
level administrative regions should continue to strengthen the research and development of new 
technologies and products.

Table 4 
The average values of the Malmquist index and decomposition results for China.

Periods

2009-2010

2010-2011

2011-2012

2012-2013

2013-2014

2014-2015

2015-2016

2016-2017

2017-2018

2018-2019

Malmquist index

0.804

1.892

1.044

1.187

1.037

1.084

1.138

1.298

1.038

1.132

EC

1.000

1.963

1.031

0.947

1.065

0.975

1.193

1.107

1.253

1.194

TC

0.796

1.157

1.073

1.291

0.977

1.119

0.967

1.241

0.839

0.955

Regions

The Northeast of China

The Northern coast in China

The Eastern coast in China

The Southern coast in China

The middle reach of the Yellow River in China

The middle reach of the Yangtze River in China

The Southwest of China

The Northwest of China

Malmquist index

1.149

1.065

1.074

1.403

1.251

1.170

1.151

1.027

EC

1.166

1.026

1.018

1.502

1.263

1.137

1.149

1.163

TC

1.033

1.053

1.057

1.097

1.011

1.053

1.057

0.929

Table 5 
The average values of the Malmquist index, EC and TC in eight economic zones.
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According to the classification of the eight economic zones, the average value of the Malmquist 
index and the average values of EC and TC from 2009 to 2019 are exhibited in Table 5. It is obvious that 
the average value of the Malmquist index in eight economic zones is greater than the unity. The highest 
average value of the Malmquist index of HTI is in the southern coast of China. The lowest of that is in 
the northwest of China. It indicates the uneven development in eight economic zones but the potential 
for breakthroughs in the evolution of high-tech industries in China. In terms of the average values of EC 
and TC, the average value of TC is lower than the average value of EC in the northeast of China, southern 
coast in China, the middle reach of the Yellow River, the middle reach of the Yangtze River, the southwest 
of China and the northwest of China. It shows that the abovementioned regions need to strengthen 
technological progress efficiency, including the research and development of new products. The average 
value of EC is lower than the average value of TC in the northern coast and eastern coast in China. It is 
mainly due to the improper innovation management and the unreasonable institutional arrangement in 
the HTI of these regions.

4.3. Spatial analysis
Based on the matrix calculated by ArcGIS, the global Moran index is calculated. The z value and 

p-value of the 28 sample provincial-level administrative regions in China are shown in Table 6. The 
global Moran index of the IE of the HTI in the 28 sample provincial-level administrative regions of China 
from 2009 to 2019 is greater than 0. Besides, the z-value is greater than the confidence interval of 1.96 
(critical value = 0.05), which is statistically significant, indicating that the IE of the HTI in the 28 sample 
provincial-level administrative regions of China has strong spatial autocorrelation and is proportional to 
the spatial aggregation degree (Brown and Chung, 2006).

Table 6 
The results of the global Moran index calculation.

Years

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

I

0.704

0.709

0.709

0.711

0.714

0.714

0.715

0.706

0.689

0.682

0.534

z

6.700

6.701

6.661

6.669

6.688

6.683

6.686

6.636

6.501

6.421

5.239

P-value*

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

After determining the existence of spatial autocorrelation, the local Moran index is calculated to 
check out whether there is local agglomeration (see details in Fig. A in the Appendix). The distributions 
of the local Moran index of the HTI for 2009, 2013, 2016, and 2019 in the 28 sample provincial-level 
administrative regions of China are shown below.
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The Moran scatter diagram has four quadrants; the first quadrant is high-high (H-H) agglomeration, 
the second quadrant is low-high (L-H) agglomeration, the third quadrant is low-low (L-L) agglomeration 
and the fourth quadrant is high-low (H-L) agglomeration (Zhong and Wang, 2021) (see details in Figure 
A of Appendix). As we can see from Fig. 4, the provincial-level administrative regions located in the first 
quadrant are Fujian, Jiangsu and Zhejiang provinces, and Beijing, Tianjin, and Shanghai municipalities, 
mainly concentrated in the southern coast, northern coast, and eastern coast, which form a high-value 
agglomeration area for IE of the HTI. In the third quadrant, the provincial-level administrative regions 
are Liaoning, Jilin, Heilongjiang, Shanxi, Shaanxi, Henan, Guizhou, Yunnan, Gansu, Sichuan and 
Hunan provinces, and Ningxia, Guangxi, and Inner Mongolia autonomous regions, which are mainly 
concentrated in the northeast, the middle regions of the Yellow River, the southwest and the northwest of 
China. They form a low-value agglomeration area for IE of the HTI. In general, it shows that 20 provincial-
level administrative regions, accounting for 71.43% of the 28 sample provincial-level administrative 
regions, are in the high-high (H-H) agglomeration areas or the low-low (L-L) agglomeration areas, 
indicating that the IE of the HTI in eight economic zones of China shows significantly positive spatial 
correlation distribution.

Meanwhile, the value of the local Moran index gradually decreases, from 0.408 in 2009 to 0.338 in 
2019 (see Fig. 4 (a-d)), indicating that the degree of agglomeration gradually weakens with time. The 
main reasons include that with time, the Internet penetration rate is getting higher and higher. The HTI 

(d) The distribution of local Moran index in 2019

Fig. 4. The distribution of the Moran scatter diagram of the HTI.

(a) The distribution of local Moran index in 2009 (b) The distribution of local Moran index in 2013

(c) The distribution of local Moran index in 2016
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between different places no longer needs geographical proximity to develop. Digital technology, thus, is 
good news for long-distance HTI collaboration.

4.4. Analysis of influencing factors on the IE
The IE of the HTI is caused by both internal factors and external factors. There are several prevalent 

methods such as the Tobit regression analysis and the bootstrap procedure (Chronopoulos et al., 2015; 
Simar and Wilson, 2007). Given that the range of IE values is greater than 0 and Tobit regression analysis 
performed better than the bootstrap analysis statistically (Banker and Natarajan, 2008), we explore the 
effects of the external variables on the IE applying the Tobit regression approach.

To analyse the influence of contextual factors on IE, this study selects the external influencing factors 
from three aspects, including management factor, economic factor, and technological factor (Liu et al., 
2020). The specific variables used, data sources, and calculating methods are as follows:

Management factor: As the main body, the government initiates the innovation strategy and leads 
the direction of innovation. The innovation of the HTI depends on government financial expenditure 
to a certain extent (Zou et al., 2021). The proportion of government expenditure in internal expenditure 
on R&D is used to quantify the degree of government support for the innovation of the HTI. The data 
supporting this variable is gathered from the CSYHTI.

Economic factor: The level of economic development is vital in the IE of HTI. The higher the level of 
economic development, the greater the capital investment in HTI will be, and thereby accelerating the 
transformation of innovation outcomes of HTI and improving the IE (Kalapouti et al., 2020). The per capita GDP 
is employed to represent the level of economic development. The corresponding data comes from the CSYHTI.

Technological factor: The development of the HTI cannot be separated from the R&D intensity. It is 
crucial to the improvement of innovation capacity. Provincial-level administrative regions with higher 
R&D intensity would acquire higher IE (Wang et al., 2020). Considering the availability of data, we select 
the number of R&D institutions to specifically measure the R&D intensity of high-tech sector. The relevant 
data is collected from the CSYHTI. 

The specific environmental factors of the HTI in China are shown in Table 7 (Per capita GDP is 
handled by a GDP deflator). The descriptive statistics are exhibited in Table 8.

Table 7 
Environmental factors of IE in China’s HTI.

Environmental factors

Management factor

Economic factor

Technological factor

Quantitative indicators

The proportion of government expenditure in internal 
expenditure on R&D

Per capita GDP

Number of R&D institutions

Units

%

Yuan-man

piece

Data Sources

CSYHTI 

CSYHTI

CSYHTI

Table 8
Descriptive statistics of environmental factors.

Variables

The proportion of government expenditure 
in internal expenditure on R&D

Per capita GDP

Number of R&D institutions of the HTI

Observations

308

308

308

Max

0.401

11.705

8.832

Std. Dev

0.098

0.461

1.354

Min

0.019

9.303

2.197

Mean

0.126

10.538

4.901

Median

0.970

10.485
4.883



S. Zhang, Y.Y. Song  / Innovation and Development Policy 5 (2023) 142-166157

Based on the analysis, we apply the Tobit regression analysis using IE as the dependent variable and 
three environmental variables as independent variables. The specific results are shown in Table 9.

Table 9
The Tobit regression results.

Note: The symbol *** means significance at the 1% level, ** means significance at the 5% level, * means significance at the 10% level.

Independent variables

The proportion of government expenditure in internal expenditure on R&D

Per capita GDP

Number of R&D institutions of the HTI

Intercept

Coefficients

-1.265***

0.097*

0.131***

-0.818

St. Err

0.228

0.054

0.018

0.540

t

-5.56

1.81

7.18

-1.52

P>|t|

0.000

0.071

0.000

0.131

We can see that the IE is statistically influenced by the abovementioned three environmental 
variables. The detailed explanations are as follows.

Firstly, the proportion of government expenditure in internal expenditure on R&D shows a 
significantly negative correlation with the IE. It is mainly because the allocated government R&D 
expenditure cannot be directly transformed into the innovation ability of the HTI. At the same time, most 
of the 28 sample provincial-level administrative regions are inland places, which are not attractive enough 
to young talents based on China’s current national conditions. This exacerbates the phenomenon of brain 
drain. Hence, R&D funds allocated by the government cannot bring about further development of the 
regional HTI with the lack of regional scientific research talents.

Secondly, the coefficient of the per capita GDP is positive in the significance test at the level of 10%, i.e. 
the per capita GDP has significantly positive impact on the IE of the HTI in China. This is easy to explain: 
The increase of per capita GDP signifies the improvement of the regional economic development, which 
leads to a better environment for the regional innovation and entrepreneurship actives, infrastructure 
construction, talent inflow, etc. Hence, it brings about the improvement of regional IE of the HTI.

Thirdly, there is also a significantly positive correlation between the number of R&D institutions of 
the HTI and the provincial IE. It is well known that R&D institutions are specialized in scientific research 
and technological innovation activities, where the staffing, office environment and management system 
are conducive to innovation activities. Understandably, the more R&D institutions in the region, the 
higher the regional IE of the HTI.

5. Conclusions, implications, and limitations

5.1. Conclusions
Benefiting from the HTI, the Chinese economy achieved rapid development. However, with the fast-

growing scale of HTI, problems associated with the unbalanced regional development of the industry 
have become increasingly prominent. These phenomena include the gathering of high-tech enterprises 
in the east, the excessive disparity between regions in R&D activities, and the obvious differences in 
the structure of regional talents. Excessive regional disparities in the development of HTI and the over-
concentration of relevant resources in developed provincial-level administrative regions will hinder the 
spillover effect of technology, which will be detrimental to the development of a national collaborative 
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innovation system. In general, a correct understanding of the issue of regional development differences 
in HTI is not only the basis for the formulation of high-tech industrial policies but also provides a certain 
reference for the implementation of national innovation-driven strategies. Therefore, evaluating the 
regional IE of the HTI and identifying the causes of the discrepancy are the primary purposes of this 
study.

To measure the regional IE of the HTI and identify the causes of the discrepancy, we conduct static 
and dynamic analysis for the HTI. We calculate the regional IE of the HTI in China from both static 
and dynamic perspectives and analyse the spatial distribution of the IE of the HTI in eight economic 
zones. The influencing factors on the IE are also explored using the Tobit regression analysis. Empirical 
results show that the regional development of the IE of the HTI is uneven. Strengthening technological 
innovation is crucial to improve the IE of HTI in the future. Additionally, the IE of the HTI in eight 
economic zones shows significantly positive and spatially correlated distribution characteristics, while 
the spatial agglomeration gradually weakens with time. Moreover, the per capita GDP and the number 
of R&D institutions have a significantly positive correlation with the improvement of the IE of the 
HTI in China, while the proportion of government expenditure in internal expenditure on R&D has a 
significantly negative effect on it. Overall, this study analyses the regional IE of the HTI in China from 
both static and dynamic perspectives. Subsequently, the results find practical paths to improving the 
regional development of the IE of the HTI.

In view of the empirical analysis, the results should be exhibited for making relevant suggestions. 
Firstly, given the uneven development state of the regional high-tech sector, regional governments are 
supposed to implement targeted measures to promote coordinated regional development of the HTI. 
Secondly, the fluctuation of the Malmquist index is mainly caused by TC from 2009 to 2019, and TC 
symbolizes the capacity of technological innovation in the HTI. Thus, the HTI should adhere to innovation 
in technology. Thirdly, based on the investigations on external influencing factors on IE, we find that 
the proportion of government expenditure in internal expenditure on R&D has a significantly negative 
correlation with the IE while the effects on IE of per capita GDP and the number of R&D institutions are 
opposite.

5.2. Policy suggestions and limitations
Based on the results, we bring forward the following policy suggestions.
Firstly, it’s necessary for policymakers to establish and improve the high-level inter-regional 

collaborative innovation system for the HTI. The IE of the HTI on the southern coast is the highest, 
while the IE of the HTI in the northeast of China is the lowest. Differences in the IE in the regional HTI 
are significant. The regions in the northeast, the northwest, and the southwest should not only focus 
on the use of innovative resources within the region but also actively introduce advanced technology 
and personnel from the surrounding regions to promote the integration and absorption of innovation 
resources. 

Secondly, technological progress efficiency (including the R&D of new products) should be 
strengthened at the high-tech enterprises of the targeted regions, including the northeast, the southern 
coast, the middle reach of the Yellow River, the middle reach of the Yangtze River, the southwest and 
the northwest. The high-tech enterprises in the regions of the northern coast and eastern coast should 
improve the innovation management and institutional arrangement in the HTI.

Thirdly, when providing financial support for the HTI, local governments should not only focus on 
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the amount of investment but also the areas, links, and quality of investment. Moreover, the governments 
should let the market take the lead in innovation development and resource allocation in the HTI. 
Meanwhile, it is important to improve the sustainable and healthy development of the regional economy 
and foster a good technological environment. The local government should reasonably increase the 
number of regional high-tech enterprises and research institutions.

We are aware that this study has some limitations due to the data availability of HTI, but it can serve 
as a start for some potential works in the future. First, with the continuous development of environmental 
protection and the resource occupation of HTI in China, the environmental efficiency considering 
undesirable outputs can be regarded as one of our future works. Second, because of the availability of the 
data, this study does not propose an internal operating mechanism of the HTI. Therefore, a multi-stage 
model can be investigated in analysing the internal operating mechanism of the HTI in the future.
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Appendix

Table A 
The descriptive statistics of indicators in this paper.

Year

2009

Statistics

Max

Min

Median

The full-time equivalent 
of R&D personnel

127449.000 

255.000 

6308.000 

Internal expenditure 
on R&D

1009.427 

1.590 

43.985 

Revenue from new 
product sales

3573.153 

2.685 

123.810 

Patent 
applications

30864.000 

43.000 

870.000 

Indicators
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Year

2010

2011

2012

2013

2014

2015

2016

2017

Statistics

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

The full-time equivalent 
of R&D personnel

13880.710 

25379.810 

156235.000 

227.307 

6025.078 

14247.430 

30481.800 

179117.000 

274.000 

6849.500 

18236.930 

35511.550 

224334.000 

405.000 

9153.000 

22252.640 

43747.000 

208174.000 

473.000 

9635.000 

23925.500 

41884.400 

205106.000 

630.000 

12053.500 

25041.820 

41913.210 

203116.500 

804.800 

14810.200 

25946.210 

41875.670 

201217.700 

1135.000 

15879.950 

26072.540 

42165.120 

200057.000 

824.000 

Internal expenditure 
on R&D

108.022 

200.688 

1155.517 

1.820 

50.351 

123.656 

229.732 

1333.247 

1.902 

52.292 

138.510 

263.221 

1572.216 

2.293 

60.019 

164.640 

310.388 

1852.199 

2.913 

67.439 

195.383 

366.635 

2157.569 

3.846 

79.506 

230.117 

426.636 

2465.513 

4.876 

94.804 

266.272 

487.369 

2816.001 

6.701 

121.995 

307.964 

555.763 

3188.047 

8.668 

Revenue from new 
product sales

490.380 

827.210 

5730.897 

1.460 

128.416 

553.851 

1155.916 

6580.543 

5.832 

210.343 

717.217 

1438.004 

7748.592 

9.319 

193.007 

830.522 

1706.612 

9057.448 

13.027 

307.646 

1033.942 

1946.266 

10260.970 

11.858 

386.990 

1197.904 

2212.312 

12291.080 

12.537 

618.050 

1473.418 

2642.065 

15714.110 

8.372 

704.127 

1728.352 

3291.446 

17778.870 

19.272 

Patent 
applications

2544.464 

5844.818 

26740.000 

12.000 

691.000 

2130.964 

5089.295 

39338.000 

54.000 

1333.000 

3615.071 

7703.026 

45449.000 

39.000 

1689.000 

4564.250 

8918.651 

49691.000 

58.000 

2117.000 

5104.643 

9757.610 

58119.000 

62.000 

2112.500 

5951.643 

11551.280 

50629.000 

64.000 

2400.500 

5653.143 

10165.910 

64880.000 

99.000 

2610.500 

6629.321 

12774.740 

84084.000 

138.000 

Indicators

Table A. (continued)
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Year

2018

2019

Statistics

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

Max

Min

Median

Mean

Standard deviation

The full-time 
equivalent of R&D 

15448.500 

26656.960 

41610.650 

286009.800 

950.200 

16079.150 

30413.150 

56466.370 

277561.000 

616.000 

16929.000 

30719.960 

56156.480 

Internal expenditure 
on R&D

155.996 

351.573 

628.714 

3531.049 

11.905 

194.479 

393.539 

696.165 

3907.878 

14.913 

211.291 

436.803 

770.643 

Revenue from new 
product sales

770.974 

1817.111 

3565.199 

19158.910 

21.495 

953.840 

1864.632 

3772.794 

20281.860 

7.521 

910.478 

1945.990 

3956.366 

Patent 
applications

3185.000 

7986.679 

16248.030 

105541.000 

123.000 

3691.500 

9440.500 

20294.920 

122963.000 

99.000 

4053.500 

10792.210 

23567.820 

Indicators

Data source: National Bureau of Statistics of China (NBSC). CSYHTI (2009-2019).

Table B1 
The values of the Malmquist index for 28 provincial-level administrative regions from 2009 to 2019 in China1.

DMUs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Table A. (continued)

2009-2010

1.110 

0.806 

0.871 

1.194 

0.416 

1.292 

0.311 

0.792 

0.881 

0.820 

0.570 

0.662 

0.882 

0.947 

1.022 

0.595 

0.829 

2010-2011

0.935 

0.784 

1.085 

1.030 

1.626 

1.083 

2.143 

1.342 

1.264 

1.832 

1.783 

2.021 

1.151 

1.176 

1.115 

1.695 

1.338 

2011-2012

1.064 

1.283 

1.340 

1.344 

0.684 

0.790 

1.117 

1.355 

0.910 

1.041 

1.366 

1.032 

1.130 

1.328 

1.024 

0.960 

1.196 

2012-2013

0.847 

1.144 

1.145 

0.733 

0.694 

1.250 

1.271 

0.938 

0.914 

0.931 

1.232 

0.966 

0.975 

1.311 

0.920 

5.646 

1.049 

2013-2014

1.075 

0.820 

1.127 

1.165 

0.481 

0.878 

0.955 

1.255 

1.346 

1.132 

0.715 

1.098 

0.942 

1.324 

1.074 

1.033 

1.107 

2015-2016

0.893 

1.143 

1.161 

0.530 

0.691 

1.568 

1.185 

1.530 

1.079 

1.039 

0.945 

1.015 

1.221 

1.690 

1.138 

0.965 

1.340 

2016-2017

0.970 

0.917 

1.078 

1.888 

5.515 

0.874 

0.849 

0.719 

1.191 

0.851 

0.911 

1.003 

0.946 

1.093 

1.173 

1.002 

1.091 

2017-2018

1.196 

1.006 

1.370 

0.871 

0.360 

1.107 

1.343 

1.252 

1.156 

1.004 

1.076 

0.952 

1.044 

1.250 

0.829 

0.989 

1.472 

2018-2019

1.295 

1.185 

1.804 

1.036 

0.954 

0.748 

1.259 

2.212 

1.325 

0.967 

1.058 

0.826 

1.149 

1.148 

0.966 

0.680 

1.174 

1 The numbers 1-28 in the Table B1-B3 and Figure A represent the following provincial-level administrative regions: Beijing, Tianjin, Hebei, 
Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, 
Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu and Ningxia.

2014-2015

0.911 

0.659 

1.003 

1.048 

1.781 

1.136 

0.953 

0.965 

0.936 

0.984 

0.972 

0.986 

1.252 

1.136 

1.303 

1.014 

1.344 
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Table B2 
The values of TC for 28 provincial-level administrative regions from 2009 to 2019 in China.

Table B1. (continued)

DMUs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2009-2010

0.957 

0.836 

0.820 

0.743 

0.368 

0.989 

0.678 

0.879 

0.964 

1.145 

0.753 

0.561 

0.857 

0.795 

1.001 

0.641 

0.867 

0.851 

0.906 

0.798 

0.426 

0.748 

0.854 

0.844 

0.796 

2010-2011

0.978 

1.178 

1.253 

1.546 

0.666 

0.732 

1.203 

0.758 

1.294 

1.165 

1.402 

1.873 

1.230 

1.117 

1.141 

1.744 

1.070 

0.957 

1.496 

1.311 

0.677 

1.280 

0.823 

1.198 

1.550

2011-2012

1.107 

1.023 

1.001 

0.719 

0.684 

1.103 

0.852 

1.146 

1.089 

1.022 

1.191 

1.057 

1.089 

1.076 

1.058 

0.975 

1.117 

1.222 

1.067 

0.822 

2.808 

0.979 

1.324 

0.893 

0.726

2012-2013

0.960 

1.127 

1.386 

2.055 

0.921 

1.232 

1.635 

1.319 

1.062 

1.035 

0.873 

1.005 

1.115 

1.333 

1.003 

1.472 

1.350 

1.165 

1.056 

1.375 

1.763 

1.231 

0.850 

2.202 

1.695

2013-2014

1.069 

0.968 

0.969 

0.876 

0.973 

0.853 

0.922 

0.877 

1.091 

1.102 

1.096 

1.052 

1.095 

0.886 

1.097 

0.996 

1.061 

0.893 

1.128 

0.862 

0.697 

0.972 

1.048 

0.989 

0.891

2015-2016

1.038 

1.008 

0.932 

0.838 

0.835 

0.856 

0.891 

0.923 

1.086 

1.082 

1.078 

0.986 

1.072 

0.877 

1.194 

0.936 

1.026 

1.016 

1.156 

0.880 

1.015 

0.868 

1.011 

0.872 

0.908

2014-2015

0.953 

1.047 

1.192 

1.223 

1.451 

1.184 

1.194 

1.184 

0.972 

0.987 

0.755 

1.017 

1.042 

1.245 

1.029 

1.118 

1.083 

1.092 

0.986 

1.178 

1.277 

1.134 

0.919 

1.212 

1.179

2016-2017

1.279 

1.269 

1.219 

0.902 

0.929 

1.400 

1.475 

1.298 

1.355 

1.038 

1.036 

1.052 

1.255 

1.450 

1.259 

1.084 

1.345 

1.154 

1.043 

1.677 

1.338 

1.144 

1.460 

1.459 

1.473

2017-2018

0.877 

0.901 

0.860 

0.826 

0.730 

0.819 

0.760 

0.808 

0.850 

1.004 

1.032 

1.005 

0.866 

0.834 

0.811 

0.892 

0.859 

0.919 

0.936 

0.641 

0.683 

0.905 

0.882 

0.765 

0.774 

2018-2019

1.072 

1.123 

1.015 

0.915 

0.989 

1.043 

1.013 

0.957 

1.186 

1.043 

0.935 

0.918 

0.977 

0.897 

1.097 

0.857 

1.108 

0.903 

1.042 

1.043 

0.799 

0.838 

0.925 

0.874 

0.734

DMUs

18

19

20

21

22

23

24

25

26

27

28

2009-2010

0.831 

1.166 

0.727 

0.135 

0.698 

0.388 

1.151 

0.443 

1.088 

1.392 

0.503 

2010-2011 

2.886 

1.001 

2.122 

11.047 

2.333 

3.971 

0.934 

1.655 

1.295 

0.823 

1.512 

2011-2012 

0.795 

1.058 

0.883 

1.094 

0.614 

0.847 

1.117 

0.717 

0.906 

1.331 

0.909 

2012-2013 

1.470 

1.099 

1.392 

0.861 

0.909 

0.780 

0.932 

0.947 

0.946 

0.859 

1.084 

2013-2014 

0.777 

1.057 

0.823 

0.576 

1.571 

1.718 

1.246 

1.069 

1.212 

1.167 

0.301 

2015-2016 

1.173 

1.274 

1.205 

0.583 

0.746 

1.020 

1.810 

1.343 

1.246 

0.783 

1.537 

2016-2017 

0.836 

1.260 

1.524 

3.527 

1.129 

0.839 

1.028 

1.137 

0.998 

1.353 

0.635 

2017-2018 

1.092 

1.020 

1.286 

0.688 

0.825 

0.719 

1.171 

1.004 

0.907 

1.023 

1.049 

2018-2019 

1.100 

1.075 

1.138 

0.956 

0.922 

1.515 

0.962 

0.866 

1.513 

0.865 

1.007 

2014-2015

0.917 

0.982 

1.004 

0.952 

1.435 

0.921 

1.353 

0.693 

1.323 

1.172 

1.229 
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DMUs

26

27

28

2009-2010

0.885 

0.781 

0.547 

2010-2011

1.041 

0.976 

0.737 

2011-2012

1.133 

1.050 

0.714 

2012-2013

1.311 

1.370 

1.247 

2013-2014

1.058 

0.864 

0.977 

2015-2016

1.007 

0.890 

0.792 

2014-2015

1.138 

1.180 

1.356 

2016-2017

1.228 

1.271 

0.858 

2017-2018

0.850 

0.748 

0.651 

2018-2019

0.878 

0.885 

0.676 

Table B2. (continued)

Table B3 
The values of EC for 28 provincial-level administrative regions from 2009 to 2019 in China.

DMUs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2009-2010

1.160 

0.965 

1.063 

1.606 

1.131 

1.307 

0.458 

0.901 

0.914 

0.716 

0.757 

1.181 

1.029 

1.190 

1.021 

0.928 

0.957 

0.976 

1.287 

0.911 

0.316 

0.933 

0.455 

1.364 

0.557 

1.229 

1.783 

0.920 

2010-2011

0.956 

0.665 

0.866 

0.666 

2.441 

1.479 

1.781 

1.770 

0.977 

1.572 

1.272 

1.079 

0.936 

1.053 

0.977 

0.972 

1.250 

3.015 

0.669 

1.618 

16.314 

1.822 

4.825 

0.780 

1.068 

1.244 

0.844 

2.053 

2011-2012

0.961 

1.255 

1.339 

1.869 

1.000 

0.716 

1.311 

1.182 

0.836 

1.019 

1.146 

0.976 

1.038 

1.235 

0.968 

0.984 

1.071 

0.650 

0.991 

1.075 

0.390 

0.627 

0.640 

1.251 

0.987 

0.800 

1.268 

1.273 

2012-2013

0.882 

1.015 

0.826 

0.357 

0.754 

1.014 

0.777 

0.711 

0.861 

0.900 

1.411 

0.961 

0.874 

0.983 

0.917 

3.835 

0.777 

1.262 

1.041 

1.013 

0.488 

0.739 

0.917 

0.423 

0.559 

0.722 

0.627 

0.869 

2013-2014

1.006 

0.847 

1.164 

1.329 

0.494 

1.029 

1.035 

1.431 

1.234 

1.027 

0.652 

1.044 

0.860 

1.493 

0.979 

1.036 

1.044 

0.870 

0.937 

0.955 

0.827 

1.617 

1.639 

1.260 

1.200 

1.145 

1.350 

0.308 

2015-2016

0.861 

1.133 

1.246 

0.632 

0.828 

1.832 

1.329 

1.657 

0.993 

0.961 

0.876 

1.029 

1.138 

1.927 

0.953 

1.031 

1.306 

1.154 

1.102 

1.370 

0.574 

0.859 

1.009 

2.077 

1.480 

1.237 

0.879 

1.942 

2014-2015

0.955 

0.630 

0.841 

0.856 

1.228 

0.960 

0.798 

0.815 

0.963 

0.998 

1.287 

0.969 

1.202 

0.912 

1.266 

0.906 

1.241 

0.840 

0.997 

0.852 

0.745 

1.266 

1.002 

1.116 

0.587 

1.163 

0.993 

0.907 

2016-2017

0.758 

0.723 

0.884 

2.094 

5.939 

0.624 

0.576 

0.554 

0.879 

0.820 

0.879 

0.953 

0.754 

0.754 

0.932 

0.924 

0.811 

0.725 

1.208 

0.908 

2.636 

0.987 

0.575 

0.705 

0.772 

0.813 

1.065 

0.740 

2017-2018

1.364 

1.116 

1.594 

1.055 

0.493 

1.351 

1.767 

1.549 

1.359 

1.000 

1.043 

0.947 

1.206 

1.498 

1.022 

1.109 

1.713 

1.189 

1.090 

2.006 

1.008 

0.912 

0.815 

1.531 

1.297 

1.067 

1.368 

1.612 

2018-2019

1.208 

1.056 

1.778 

1.133 

0.965 

0.718 

1.243 

2.310 

1.117 

0.927 

1.132 

0.899 

1.176 

1.279 

0.881 

0.793 

1.060 

1.218 

1.032 

1.091 

1.196 

1.100 

1.638 

1.100 

1.179 

1.724 

0.977 

1.490 
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Fig. A. The Moran scatter diagrams of the HTI.

(a) The Moran index in 2009                                                                    (b) The Moran index in 2013

(c) The Moran index in 2016                                                                  (d) The Moran index in 2019


